Adjustable Voltage Reference – TLV431W

Precision low-voltage programmable Shunt Reference in bare die form

Description

The TLV431W three-terminal shunt reference combines low temperature co-efficient zener band-gap regulation with programmability. The device operates over a wide 80µA to 100mA current range with voltage adjustable from V_{REF} (1.24V) to 18V, set via x2 external resistors. With high temperature stability and typical dynamic impedance of 0.2 Ω , these references make excellent replacements for zener diodes in many high reliability applications. With sharp accurate response, the device is simply implemented as either positive or negative reference.

Ordering Information

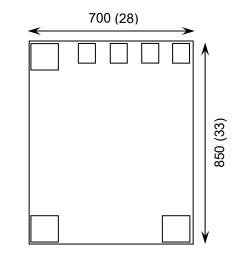
The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection + MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space) + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 280µm(11 Mils) On request
- In Metal or Ceramic package On request

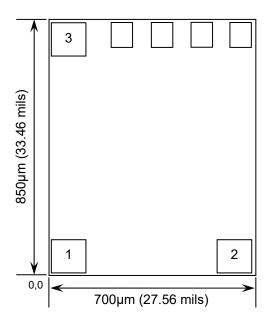
Features:

- Programmable output voltage to 18V
- ±0.5% reference voltage tolerance at 25°C
- Low dynamic output impedance: 0.2Ω Typ
- Sink current capability: 80µA to 100mA
- Band-gap reference corrects temperature drift
- Direct replacement for TLV431 and TLVH431
- Full military temperature range.

Die Dimensions in µm (mils)

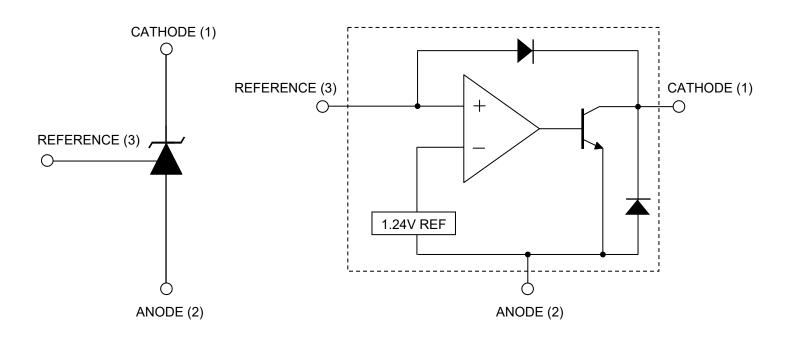
Mechanical Specification

Die Size (Unsawn)	700 x 850 28 x 33	µm mils	
Minimum Bond Pad Size	100 x 100 3.94 x 3.94	µm mils	
Die Thickness	260 (±20) 11 (±0.8)	µm mils	
Top Metal Composition	Al 1%Si 1.4µm		
Back Metal Composition	N/A – Bare Si		



Rev 1.0

18/03/21


Pad Layout and Functions

PAD	FUNCTION	COORDINATES (µm)		
		X	Y	
1	CATHODE (K)	60	60	
2	ANODE (A)	540	60	
3	REFERENCE	60	690	
CONNECT CHIP BACK TO ANODE				

Rev 1.0 18/03/21

Symbol & functional block diagram

Rev 1.0 18/03/21

Absolute Maximum Ratings¹ $T_A = 25^{\circ}C$ unless otherwise stated

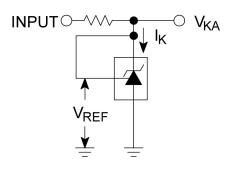
PARAMETER	SYMBOL VALUE		UNIT	
Cathode to Anode Voltage	V _{KA}	20	V	
Cathode Current Range, Continuous	Ι _κ	120	mA	
Reference Input Current Range, Continuous	I _{REF}	-0.05 to 3	mA	
ESD Rating (Human Body Model)	V _{ESD}	>2	kV	
Operating Junction Temperature Range	TJ	150	°C	
Storage Temperature	T _{STG}	-65 to 150	C°	

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNIT
Cathode Voltage	V _{KA}	V _{REF}	18	V
Cathode Current	Ι _κ	0.08	100	mA
Ambient Operating Temperature Range	T _A	-55 to 125		°C

Electrical Characteristics, $T_A = 25^{\circ}C$, $V_{KA} = V_{REF}$, $I_K = 10mA$ unless otherwise stated


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Reference input voltage	V _{REF}	$V_{KA} = V_{REF}, I_K = 10mA$	1.235	1.240	1.245	V
Reference input voltage, Deviation over temperature range	ΔV_{REF}	V _{KA} = V _{REF} , I _K = 10mA, -55°C ≤ T _A ≤ +125°C	-	10	20	mV
Ratio of change in reference input voltage to change in cathode to anode voltage	ΔV _{REF} / ΔV _{KA}	$I_{\rm K}$ = 10mA , $\Delta V_{\rm KA}$ = 18V to $V_{\rm REF}$	-1.0	-0.4	-	mV/V
Reference input current	I _{REF}	I _K = 10mA, R1 = 10kΩ, R2 = ∞	-	0.1	0.5	μA
Reference input current, Deviation over temperature range	ΔI_{REF}	I _K = 10mA, R1 = 10kΩ, R2 = ∞	-	0.04	0.2	μΑ
Minimum cathode current for regulation	I _{K(MIN)}	$1.215 V \le V_{REF} \le 1.265 V$	-	60	80	μA
Off-State cathode current	I _{K(OFF)}	V _{KA} = 18V, V _{REF} = 0V	-	0.01	0.5	μA
Dynamic impedance	ZKA	I_{K} = 100mA to 1mA , $f \leq 1.0 KHz$	-	0.2	0.4	Ω

Test Circuits

Rev 1.0 18/03/21

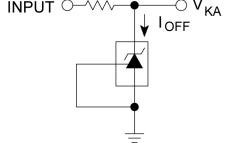


FIGURE 1. V_{KA} = V_{REF}

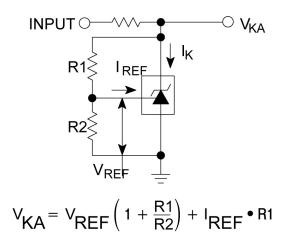


FIGURE 3. V_{KA} > V_{REF}

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

