High-Speed, EMC Ruggedized CMOS / LVCMOS Digital Isolator in bare die form

Description

SiS8017 quad channel digital isolator consists of two forward and two reverse-direction isolated channels. Each channel has a logic input & output buffer separated by a doublecapacitive silicon dioxide (SiO₂) insulation barrier to provide up to 5000 V_{RMS} isolation rating² per UL 1577.

Enable pins are used to place their respective outputs in high impedance for multi-master driving applications and to reduce power consumption. If the input power or signal is lost, outputs default to high impedance state.

Used with isolated power supplies, SiS8017 prevents noise current on data buses, such as RS-485, RS-232 or CAN. Ancillary circuits are also prevented from entering the local ground to disrupt or damage sensitive circuitry. Via innovative chip design, high electromagnetic immunity, low emissions and low power consumption enable system-level improvement in ESD, EFT, surge and emission compliance.

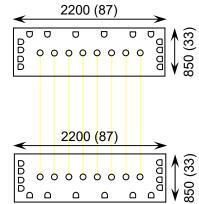
Ordering Information

The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection + MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below. www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 280µm(11 Mils) On request
- Assembled into SOIC-16 Package On request

Features:

- CMOS or LVCMOS I/O capability
- Up to 100 Mbps data rate
- Robust isolation barrier:
 - Up to 5000 V_{RMS} isolation rating²
 - Up to 12.8 kV surge capability
 - ±95 kV/µs typical CMTI
- Wide supply range: 2.25V to 5.5V
- 2.25V to 5.5V level translation
- Wide temperature range: -55°C to 125°C
- Low power consumption:
 - typical 1.5mA per channel at 1 Mbps
- Low propagation delay: 19ns typical (5V supply)
- Robust electromagnetic compatibility (EMC)

Die Dimensions in µm (mils)

Mechanical Specification

Die Size (Un-sawn)	2200 x 850 87 x 33	µm mils	
Minimum Bond Pad Size	57 x 57 2.24 x 2.24	µm mils	
Die Thickness	280 (±20) 11 (±0.79)	µm mils	
Top Metal Composition	Al 1%Si 4µn	n	
Back Metal Composition	N/A – Bare Si		

Rev 1.0

10/03/25

Pad Layout and Functions

SUGGESTED MATERIALS					
WIREBOND	Al 17.5µm (0.7 Mils)				
DIE ATTACH	NON-CONDUCTIVE EPOXY				
MOLD COMPOUND	CEL-9240HF10XZ-M1 (FULLY ENCAPSULATED ASSEMBLIES)				
DAM & FILL GLOB COATING	DELO® MONOPOX GE6585 – DAM DELO® MONOPOX GE6525 - FILL (DIE-TO-DIE WIRE BONDS IN CAVITY ASSEMBLIES)				

PAD	FUNCTION	μm)		
		X	Y	
	DIE 1	1		
1	VCC1	-2123	-115	
2	VCC1	-2123	-210	
3	GND1	-2123	-580	
4	GND1	-2123	-675	
5	NO CONNECT	-1955	-769	
6	IN_A	-1686	-769	
7	IN_B	-1276	-769	
8	OUT_C	-866	-769	
9	OUT_D	-456	-769	
10	EN_1	-188	-769	
11	GND1	-20	-675	
12	GND1	-20	-580	
13	NO CONNECT	-20	-210	
14	NO CONNECT	-20	-115	
	DIE 2	2		
15	NO CONNECT	2123	115	
16	NO CONNECT	2123	210	
17	GND2	2123	580	
18	GND2	2123	675	
19	EN2	1955	769	
20	IN_D	1686	769	
21	IN_C	1276	769	
22	OUT_B	866	769	
23	OUT_A	456	769	
24	NO CONNECT	188	769	
25	GND2	20	675	
26	GND2	20	580	
27	VCC2	20	210	

Rev 1.0 10/03/25

COORDINATES

MINIMUM PAD OPENING SIZE						
PERIPHERAL	57 x 57µm (2.24 x 2.24 Mils)					
DIE-TO-DIE	Ø 90 µm (Ø 3.54 Mils)					

ISOLATE CHIP BACKSIDES (DIE 1 & DIE 2)

20

115

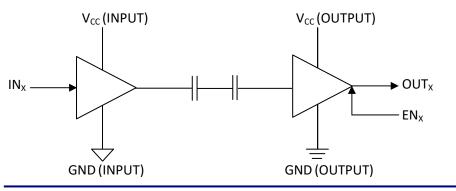
VCC2

28

*** PLEASE NOTE ***

The assembly materials suggested are provided on an example basis only and are not a guarantee of conditions or characteristics. The IC's operating characteristics & maximum isolation voltages are affected by the length, material + thickness of die-to-die bond wires and also coating material & it's distribution. Users are advised to verify that performance, material section & assembly method is suitable for the end application usage.

Rev 1.0 10/03/25


Pad Descriptions

PAD	SYMBOL	DESCRIPTION
1 - 2	VCC1	Power supply – DIE 1
3 - 4	GND1	Ground connection for VCC1
5	NO CONNECT	Not connected
6	IN_A	Input, Channel A
7	IN_B	Input, Channel B
8	OUT_C	Output, Channel C
9	OUT_D	Output, Channel D
10	EN1	Output enable 1 Outputs on DIE 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low.
11 - 12	GND1	Ground connection for VCC1
13 - 16	NO CONNECT	Not connected
17 -18	GND2	Ground connection for VCC2
19	EN2	Output enable 2 Outputs on DIE 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low.
20	IN_D	Input, Channel D
21	IN_C	Input, Channel C
22	OUT_B	Output, Channel B
23	OUT_A	Output, Channel A
24	NO CONNECT	Not connected
25 - 26	GND2	Ground connection for VCC2
27 - 28	VCC2	Power supply – DIE 2

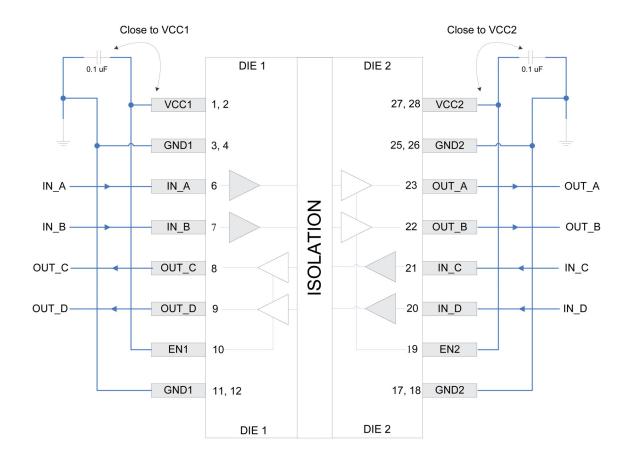
Functional Operation

Using an ON-OFF keying (OOK) modulation protocol, digital data is transmitted across a SiO₂ based isolation barrier. The transmitting die sends a high-frequency carrier across the isolation barrier via wire-bond to represent one digital state whereas the other digital state is represented by no signal. The receiving die demodulates the signal after advanced signal conditioning to produce an isolated output through a buffer stage. If the enable on either die is pulled low, then the output goes to high impedance. CMTI performance is maximised and radiated emissions are minimised via a combination of the high frequency carrier circuitry plus input/output buffer switching.

Simplified Block Diagram

Applications

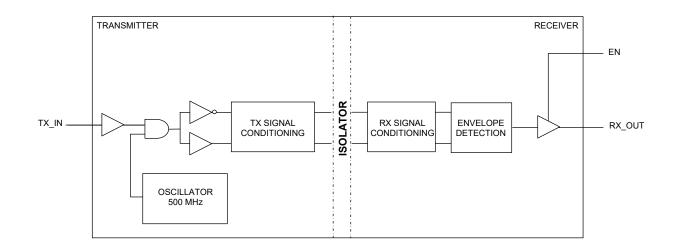
- Motor Control
- Medical Equipment
- Industrial Automation
- Hi-Rel Sensors
- Solar Inverters
- 2.25V to 5.5V level translation
- Isolated MCP/MCM integrations


Page 3 of 13

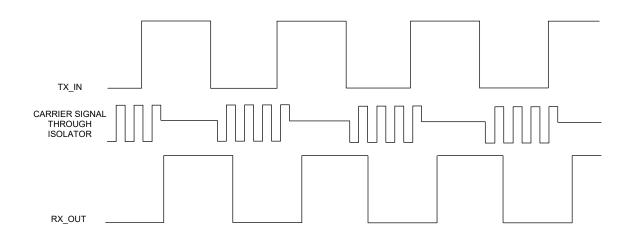
www.siliconsupplies.com

Connection Schematic

* To help ensure reliable operation at data rates and supply voltages, a 0.1 µF bypass capacitor is recommended at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in the application, isolated power can be generated for the secondary-side with the help of a transformer.


Truth Table

VCCI	VCCO	INPUT	OUTPUT ENABLE	OUTPUT	COMMENTS
POWERED UP	POWERED UP	HIGH	HIGH OR OPEN	HIGH	NORMAL OPERATION
POWERED UP	POWERED UP	LOW	HIGH OR OPEN	LOW	NORMAL OPERATION
POWERED UP	POWERED UP	OPEN	HIGH OR OPEN	HIGH	DEFAULT MODE
IRRELEVANT	POWERED UP	IRRELEVANT	LOW	HIGH IMPEDANCE	DEFAULT MODE
POWERED DOWN	POWERED UP	IRRELEVANT	HIGH OR OPEN	HIGH	DEFAULT MODE
IRRELEVANT	POWERED DOWN	IRRELEVANT	IRRELEVANT	UNDETERMINED	-



Signal Chain

On-Off Keying (OOK) Modulation Scheme

Rev 1.0 10/03/25

Rev 1.0 10/03/25

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE		UNIT
Supply Voltage Range	V _{CC1} , V _{CC2}	-0.5 to +6		V
Voltage at IN _X , OUT _X , EN _X	V	-0.5 to V _{CCX} +0.5		V
Output Current	Ι _ο	±15	±15	
Storage Temperature	T _{STG}	-65 to +150	-65 to +150	
Operating Junction Temperature	TJ	-40 to 150	-40 to 150	
Isolation Voltage ²	V _{ISO}	5	5	
Electrostatic Discharge (HBM) ³	V _{ESD}	8		kV
Power Dissipation Total ²	PD	V _{CC1} = V _{CC2} = 5.5V,T _J = 150°C,	200	mW
Power Dissipation Die 1 ²	P _{D1}	$C_{L} = 15 \text{ pF, Input 50 MHz 50\%} $ $duty cycle square wave $ 100		mW
Power Dissipation Die 2 ²	P _{D2}			mW
Thermal Resistance,Junction-to-ambient ²	R _{0JA}	85		°C/W

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic SOIC-16 package, results in die form are dependent on die attach, substrate and assembly methods. 3. Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins

Recommended Operating Conditions, V_{CCI} = Input-side V_{CC}; V_{CCO} = Output-side V_{CC}

PARAMETER	SVMBOL	SYMBOL CONDITIONS		LIMITS			
FARAIVIETER	STWBOL			TYP	MAX	UNITS	
Supply Voltage	V _{CC1} , V _{CC2}	-	2.25	-	5.5	V	
UVLO threshold	V _{CC(UVLO+)}	Supply Voltage rising	-	2	2.25	V	
UVLO Infestiola	V _{CC(UVLO+)}	Supply Voltage falling	1.7	1.8	-	V	
Supply Voltage UVLO hysteresis	V _{HYS(UVLO)}	-	100	200	-	mV	
		V _{cco} = 5V	-4	-	-		
High-Level Output Current	I _{ОН}	$V_{CCO} = 3.3V$	-2	-	-	mA	
Output Ourient		$V_{CCO} = 2.5V$	-1	-	-		
	I _{OL}	V _{cco} = 5V	-	-	4		
Low-Level Output Current		$V_{CCO} = 3.3V$	-	-	2	mA	
Output Ourient		$V_{CCO} = 2.5V$	-	-	1		
High-Level Input Voltage	V _{IH}	-	$0.7 \times V_{CCI}$	-	V _{CCI}	V	
Low-Level Input Voltage	V _{IL}	-	0	-	0.3 x V _{CCI}	V	
Data Rate ⁴	DR	-	0	-	100	Mbps	
Ambient Temperature	T _A	-	-55	25	125	°C	

4. 100 Mbps is the maximum specified data rate, equivalent generator: pulse PRR = 50 MHz, 50% duty cycle.

Rev 1.0 10/03/25

Safety Limiting Values^{2, 5}

PARAMETER	SYMBOL	CONDITIONS		LIMITS			UNITS
	STMDOL	CONDITI	CONDITIONS		TYP	MAX	UNITS
Safety input,		$R_{\theta JA} = 85^{\circ}C/W$,	V ₁ = 5V	-	-	280	
output, or supply	Is	T _J = 150°C,	V _I = 3.3V	-	-	425	mA
current		T _A = 25°C	V _I = 2.5V	-	-	560	
Safety input, output, or total power ⁶	Ps	R _{θJA} = 85 °C/W, T _J = 150°C, T _A = 25°C		-	-	1400	mW
Maximum safety Temperature ⁷	Ts	-		-	-	150	°C

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.
 Maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature.
 Power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

DC Characteristics 5V, V_{CC1} = V_{CC2} = 5V, V_{CC1} = Input-side V_{CC}; V_{CC0} = Output-side V_{CC}

PARAMETER	SYMBOL	СОМПІТ	CONDITIONS		LIMITS			
	STWIDOL	CONDIT		MIN	TYP	MAX	UNITS	
High-Level Output Voltage	V _{OH}	I _{OH} = -4mA,	Figure 1	V _{CCO} -0.4	V _{CCO} -0.2	-	V	
Low-Level Output Voltage	V _{OL}	I _{OL} = 4mA,	Figure 1	-	0.2	0.4	V	
Rising Input Voltage Threshold	V _{IT+(IN)}	-		-	$0.6 ext{ v}_{\text{ccl}}$	$0.7 \times V_{CCI}$	V	
Falling Input Voltage Threshold	V _{IT-(IN)}	-		0.3 x V _{CCI}	$0.4 ext{ x V}_{CCI}$	-	V	
Input Voltage Threshold Hysteresis	V _{I(HYS)}	-		0.1 x V _{CCI}	$0.2 ext{ v}_{\text{ccl}}$	-	V	
High-Level Input Current	I _{IH}	V _{IH} = V _{CCI} at INx or ENx		-	-	10	μA	
Low-Level Input Current	IIL	V _{IL} = 0V at INx or ENx		-10	-	-	μA	
Common-Mode Transient Immunity	СМТІ	V _I = V _{CCI} V _{CM} = 1200V		tbd	tbd	-	kV/µs	
Supply Current	I _{CC1} , I _{CC2}	EN1 = EN2 = 0	$V; V_I = V_{CCI}$	-	0.9	2.0	mA	
- Disable		EN1 = EN2 =	0V; V _I = 0V	-	3.0	4.6	mA	
Supply Current		EN1 = EN2 = V	$V_{\rm CCI}; V_{\rm I} = V_{\rm CCI}$	-	1.7	3.5	mA	
- DC Signal	I_{CC1}, I_{CC2}	EN1 = EN2 = \	$V_{\rm CCI}; V_{\rm I} = 0V$	-	4.0	6.0	mA	
Currente Ourrent		All channels switching with	1 Mbps	-	3.0	4.9	mA	
Supply Current - AC Signal	I _{CC1} , I _{CC2}	square wave	10 Mbps	-	4.0	6.0	mA	
	clock_input; C _L = 15 pF	_ · ·	100 Mbps	-	13.4	18.3	mA	

Rev 1.0 10/03/25

PARAMETER	SYMBOL	CONDITIO			LIMITS		UNITS
	STWIDOL	CONDITIO	0113	MIN	TYP	MAX	UNITS
High-Level Output Voltage	V _{OH}	I _{ОН} = -2mA, F	igure 1	V _{CCO} -0.3	V _{CCO} -0.1	-	V
Low-Level Output Voltage	V _{OL}	I _{OL} = 2mA, F	igure 1	-	0.1	0.3	V
Rising Input Voltage Threshold	V _{IT+(IN)}	-		-	$0.6 \times V_{CCI}$	0.7 x V _{CCI}	V
Falling Input Voltage Threshold	V _{IT-(IN)}	-		$0.3 \times V_{CCI}$	$0.4 \times V_{CCI}$	-	V
Input Voltage Threshold Hysteresis	V _{I(HYS)}	-		0.1 x V _{CCI}	$0.2 ext{ v}_{\text{ccl}}$	-	V
High-Level Input Current	I _{IH}	V _{IH} = V _{CCI} at INx or ENx		-	-	10	μA
Low-Level Input Current	IIL	V _{IL} = 0V at INx or ENx		-10	-	-	μA
Common-Mode Transient Immunity	CMTI	V _I = V _{CCI} o V _{CM} = 1200V ,		tbd	tbd	-	kV/µs
Supply Current		$EN1 = EN2 = V_C$	$_{CI}; V_{I} = V_{CCI}$	-	0.9	2.0	mA
- Disable	I_{CC1}, I_{CC2}	$EN1 = EN2 = V_0$	_{CCI} ; V _I = 0V	-	3.0	4.6	mA
Supply Current	last lass	$EN1 = EN2 = V_C$		-	1.7	3.4	mA
- DC Signal	I_{CC1}, I_{CC2}	EN1 = EN2 = V ₀	$_{\rm CCI}; V_{\rm I} = 0V$	-	4.0	5.9	mA
		All channels switching with	1 Mbps	-	3.0	4.8	mA
Supply Current - AC Signal	I _{CC1} , I _{CC2}	square wave clock input;	10 Mbps	-	3.6	5.6	mA
		$C_L = 15 \text{ pF}$	100 Mbps	-	10.3	14.4	mA

DC Characteristics 3 31/ . .

DC Characteristics 2.5V, V_{CC1} = V_{CC2} = 2.5V, V_{CC1} = Input-side V_{CC}; V_{CC0} = Output-side V_{CC}

PARAMETER	SYMBOL	SYMBOL CONDITIONS		LIMITS			
FARAIVIETER	STMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
High-Level Output Voltage	V _{OH}	I _{OH} = -1mA, Figure 1	V _{CCO} -0.2	V _{CCO} -0.05	-	V	
Low-Level Output Voltage	V _{OL}	I_{OL} = 1mA, Figure 1	-	0.05	0.2	V	
Rising Input Voltage Threshold	V _{IT+(IN)}	-	-	$0.6 \times V_{CCI}$	$0.7 ext{ x V}_{\text{CCI}}$	V	
Falling Input Voltage Threshold	V _{IT-(IN)}	-	0.3 x V _{CCI}	$0.4 \times V_{CCI}$	-	V	
Input Voltage Threshold Hysteresis	V _{I(HYS)}	-	0.1 x V _{CCI}	$0.2 \text{ x V}_{\text{CCI}}$	-	V	
High-Level Input Current	I _{IH}	$V_{IH} = V_{CCI}$ at INx or ENx	-	-	10	μA	
Low-Level Input Current	IIL	V _{IL} = 0V at INx or ENx	-10	-	-	μA	

Rev 1.0 10/03/25

DC Characteristics 2.5V Cont., V_{CC1} = V_{CC2} = 2.5V, V_{CC1} = Input-side V_{CC}; V_{CC0} = Output-side V_{CC}

PARAMETER	SYMBOL	CONDITIONS		LIMITS			UNITS
				MIN	TYP	MAX	UNITS
Common-Mode Transient Immunity	СМТІ	V _I = V _{CCI} V _{CM} = 1200V		tbd	tbd	-	kV/µs
Supply Current	I _{CC1} , I _{CC2}	EN1 = EN2 = ($V; V_I = V_{CCI}$	-	0.9	1.9	mA
- Disable		EN1 = EN2 =	0V; V _I = 0V	-	3.0	4.6	mA
Supply Current	I _{CC1} , I _{CC2}	EN1 = EN2 = V	$V_{\rm CCI}; V_{\rm I} = V_{\rm CCI}$	-	1.7	3.4	mA
- DC Signal		EN1 = EN2 = V	/ _{CCI} ; VI = 0 V	-	4.0	5.9	mA
Supply Current - AC Signal	I _{CC1} , I _{CC2} switchi clock ii	All channels switching with	1 Mbps	-	2.9	4.7	mA
		square wave	10 Mbps	-	3.4	5.4	mA
		$C_L = 15 \text{pF}$	100 Mbps	-	8.3	11.9	mA

Switching Characteristics 5V, V_{CC1} = V_{CC2} = 5V

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNITS
FARAIVIETER	STMBOL	CONDITIONS	MIN	TYP	MAX	
Propagation Delay Time	t _{PHL} , t _{PLH}	See Figure 1	-	19	24	ns
Pulse Width Distortion ⁸	PWD t _{PHL} - t _{PLH}	See Figure 1	-	2	7	ns
Channel-to-Channel output skew time ⁹	t _{sk(o)}	Same-direction channels	-	-	4	ns
Part-to-Part skew time ¹⁰	t _{sk(pp)}	-	-	-	4.4	ns
Output Signal Rise Time	t _r	See Figure 1	-	1.5	2.4	ns
Output Signal Fall Time	t _f	See Figure 1	-	1.5	2.4	ns
Disable Propagation Delay, high-to-high impedance output	t _{PHZ}	See Figure 2	-	9	20	ns
Disable Propagation Delay, low-to-high impedance output	t _{PLZ}	See Figure 2	-	9	20	ns
Enable Propagation Delay,high impedance-to-high output	t _{PZH}	See Figure 2	-	7	20	ns
Enable Propagation Delay,high impedance-to-low output	t _{PZL}	See Figure 2	-	3	8.5	ns
Default output delay time from input power loss	t _{DO}	Measured from the time V _{CC} goes below 1.7 V. See Figure 3	-	0.1	0.3	μs

Rev 1.0 10/03/25

Switching Characteristics 3.3V, V_{CC1} = V_{CC2} = 3.3V

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Propagation Delay Time	t _{PHL} , t _{PLH}	See Figure 1	-	21	27	ns
Pulse Width Distortion ⁸	PWD	See Figure 1	-	3	7	ns
Channel-to-Channel output skew time ⁹	t _{sk(o)}	Same-direction channels	-	-	4.1	ns
Part-to-Part skew time ¹⁰	t _{sk(pp)}	-	-	-	4.5	ns
Output Signal Rise Time	tr	See Figure 1	-	1.7	3.5	ns
Output Signal Fall Time	t _f	See Figure 1	-	2.1	3.5	ns
Disable Propagation Delay, high-to-high impedance output	t _{PHZ}	See Figure 2	-	17	30	ns
Disable Propagation Delay, low-to-high impedance output	t _{PLZ}	See Figure 2	-	17	30	ns
Enable Propagation Delay,high impedance-to-high output	t _{PZH}	See Figure 2	-	17	30	ns
Enable Propagation Delay,high impedance-to-low output	t _{PZL}	See Figure 2	-	3.2	8.5	ns
Default output delay time from input power loss	t _{DO}	Measured from the time V_{CC} goes below 1.7 V. See Figure 3	-	0.1	0.3	μs

Switching Characteristics 2.5V, V_{CC1} = V_{CC2} = 2.5V

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Propagation Delay Time	t _{PHL} , t _{PLH}	See Figure 1	-	24	29	ns
Pulse Width Distortion ⁸	PWD	See Figure 1	-	4	8	ns
Channel-to-Channel output skew time ⁹	t _{sk(o)}	Same-direction channels	-	-	4.1	ns
Part-to-Part skew time ¹⁰	t _{sk(pp)}	-	-	-	4.6	ns

Rev 1.0 10/03/25

Switching Characteristics Continued 2.5V, V_{CC1} = V_{CC2} = 2.5V

PARAMETER	SYMBOL C	CONDITIONS	LIMITS			UNITS
	STWBOL	CONDITIONS	MIN	TYP	MAX	
Output Signal Rise Time	tr	See Figure 1	-	3.5	4.5	ns
Output Signal Fall Time	t _f	See Figure 1	-	3.5	4.5	ns
Disable Propagation Delay, high-to-high impedance output	t _{PHZ}	See Figure 2	-	22	40	ns
Disable Propagation Delay, low-to-high impedance output	t _{PLZ}	See Figure 2	-	22	40	ns
Enable Propagation Delay,high impedance-to-high output	t _{PZH}	See Figure 2	-	18	40	ns
Enable Propagation Delay,high impedance-to-low output	t _{PZL}	See Figure 2	-	3.3	8.5	ns
Default output delay time from input power loss	t _{DO}	Measured from the time V _{CC} goes below 1.7 V. See Figure 3	-	0.1	0.3	μs

8. Also known as Pulse Skew. 9. $t_{sk(o)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. 10. $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices.

Test & Measurement Circuits

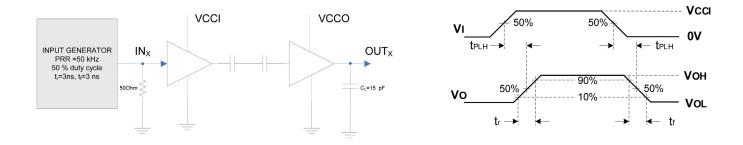
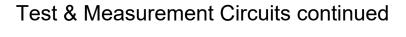
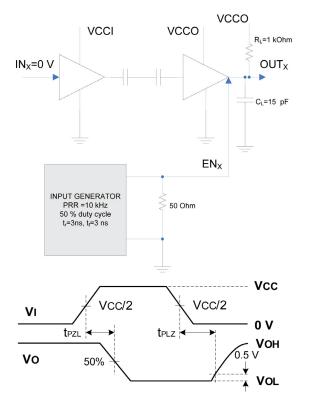




Figure 1 – Switching Characteristics Test Circuit and Voltage Waveforms

Rev 1.0 10/03/25

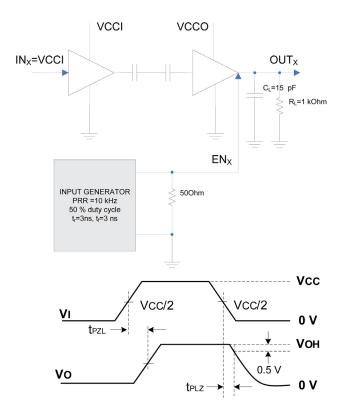


Figure 2 – Enable/Disable Propagation Delay Time Test Circuit and Waveform

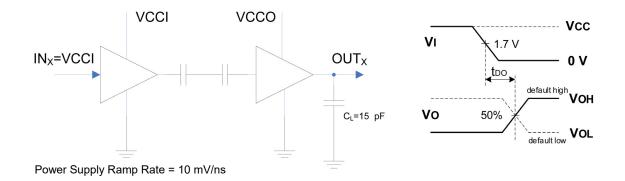


Figure 3 – Default Output Delay Time Test Circuit and Voltage Waveforms

Test & Measurement Circuits continued

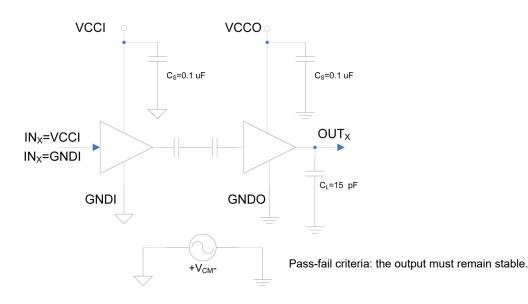
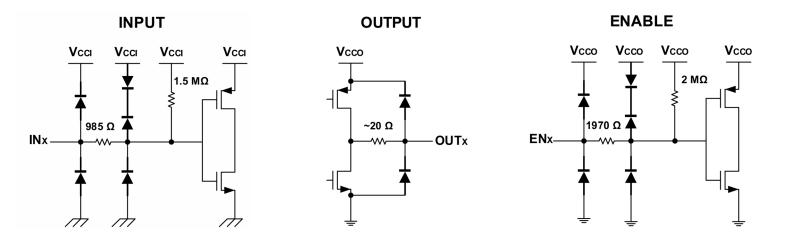



Figure 4 - Common-Mode Transient Immunity Test Circuit

Input / Output Schematics

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Rev 1.0 10/03/25