650V 20A SiC Schottky Diode – SiS650S20AS

Silicon Carbide Schottky Barrier Rectifier diode in bare die form

Capable of high temperature operation >= 175°C

No Reverse Recovery / No Forward Recovery

No suffix - MIL-STD-750 /2073 Visual Inspection

+ MIL-PRF-38534 Class H LAT

+ MIL-PRF-38534 Class K LAT

"H" - MIL-STD-750 /2073 Visual Inspection

"K" - MIL-STD-750 /2073 Visual Inspection

For further information on LAT process flows see below.

www.siliconsupplies.com/quality/bare-die-lot-qualification

Default – Die in Waffle Pack (100 per tray capacity)

With additional electrical selection - By specific request

Sawn Wafer on Tape - By specific request

Unsawn Wafer - By specific request

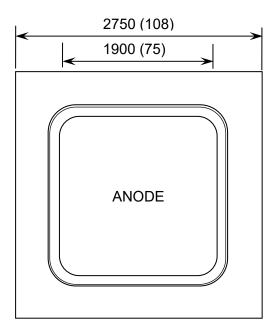
High Frequency Operation

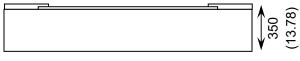
Ordering Information:

The following part suffixes apply:

LAT = Lot Acceptance Test.

Supply Formats:


High Surge Current Capability


Positive Temperature Coefficient

Die Dimensions in µm (mils)

Rev 1.0

30/10/23

CHIP BACKSIDE IS CATHODE

Mechanical Specification

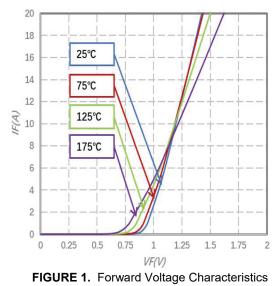
Die Size (Unsawn)	2750 x 2750 108 x 108	µm mils	
Anode Pad Size	1900 x 1900 75 x 75	µm mils	
Die Thickness	350 (±20) 13.78 (0.79)	µm mils	
Top Metal Composition	Al 4µm		
Back Metal Composition	Ag 0.4µm		

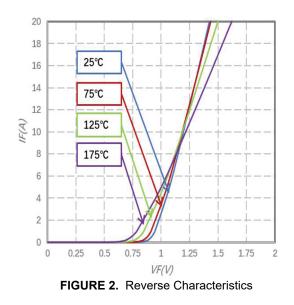
Features:

650V 20A SiC Schottky Diode – SiS650S20AS

Rev 1.0 30/10/23

Absolute Maximum Ratings T_J = 25°C unless otherwise stated


PARAMETER	SYMBOL	VALUE	UNIT	
Repetitive peak reverse voltage	V _{RRM}	650	V	
Surge peak reverse voltage	V _{RSM}	650	V	
DC Peak Blocking Voltage	V _{BR}	650	V	
Average forward rectified current	I _{F(AV)}	20	A	
Repetitive Peak Forward Surge Current	I _{FRM}	105	A	
Peak Single-Cycle Non-Repetitive Surge Current	I _{FSM}	170	А	
Operating Junction temperature	TJ	-55 to 175	°C	
Storage Temperature Range	T _{STG}	-65 to 175	°C	


Electrical Characteristics T_J = 25°C unless otherwise stated

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	MAX	UNIT
Maximum instantaneous forward voltage ¹	V _{F1}	V _{RRM} = 650V, I _{FM} = 20A	-	1.45	1.70	V
	V _{F2}	V_{RRM} = 650V, I_{FM} = 20A, T_{J} = 175°C	-	1.65	2.00	v
Maximum reverse leakage current ¹	I _{RM} @ V _{RM}	V _R = 650V	-	1.5	50	μΑ
		V _R = 650V, T _J = 175°C	-	15	200	
Junction Capacitance	CT	V _R = 0V, f = 1MHz,	-	1550	-	pF
Reverse Recovery Charge	Q _C	V_R = 400V , I_F = 20A, di/dt = 200A/µs	-	96.7	-	nC
Capacitance Stored Energy	Ec	V _R = 400V	-	23.69	-	μJ

1. Pulse Width \leq 300µs, Duty Cycle \leq 2.0%

Typical Characteristics T_J = 25°C

Typical Characteristics T_J = 25°C unless otherwise stated

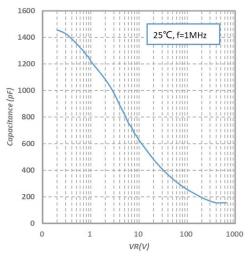


FIGURE 3. Capacitance Versus Reverse Voltage

60

50

40

(T) 30

20

10

0

n

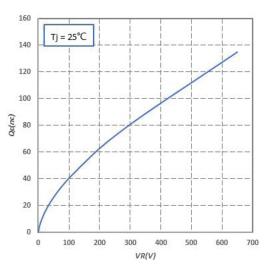
100

200

300

VR(V)

FIGURE 5. Capacitance Stored Energy


400

500

600

700

Tj = 25°C

30/10/23

FIGURE 4. Total Capacitance Charge Versus Reverse Voltage

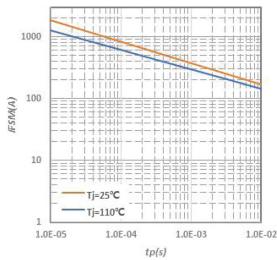


FIGURE 6. Non-repetitive Peak Forward Surge Current Versus Pulse Duration

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

