

650V 3A SiC Schottky Diode – SiS650S03AS

are die form

Rev 1.0

30/10/23

Silicon Carbide Schottky Barrier Rectifier diode in bare die form

Features:

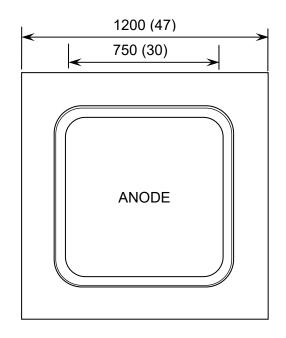
- Capable of high temperature operation >= 175°C
- High Frequency Operation
- High Surge Current Capability
- No Reverse Recovery / No Forward Recovery
- Positive Temperature Coefficient

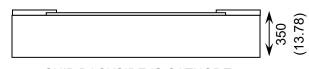
Ordering Information:

The following part suffixes apply:

- No suffix MIL-STD-750 /2073 Visual Inspection
- "H" MIL-STD-750 /2073 Visual Inspection+ MIL-PRF-38534 Class H LAT
- "K" MIL-STD-750 /2073 Visual Inspection+ MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.


For further information on LAT process flows see below.


www.siliconsupplies.com\quality\bare-die-lot-qualification

Supply Formats:

- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape By specific request
- Unsawn Wafer By specific request
- With additional electrical selection By specific request

Die Dimensions in µm (mils)

CHIP BACKSIDE IS CATHODE

Mechanical Specification

Die Size (Unsawn)	1200 x 1200 47 x 47	μm mils	
Anode Pad Size	750 x 750 30 x 30	μm mils	
Die Thickness	350 (±20) 13.78 (0.79)	µm mils	
Top Metal Composition	Al 4µm		
Back Metal Composition	Ag 0.4µm		

650V 3A SiC Schottky Diode – SiS650S03AS

Rev 1.0 30/10/23

Absolute Maximum Ratings T_J = 25°C unless otherwise stated

PARAMETER	SYMBOL	VALUE	UNIT	
Repetitive peak reverse voltage	V_{RRM}	650	V	
Surge peak reverse voltage	V_{RSM}	650	V	
DC Peak Blocking Voltage	V_{BR}	650	V	
Average forward rectified current	I _{F(AV)}	3	A	
Repetitive Peak Forward Surge Current	I _{FRM}	23	A	
Peak Single-Cycle Non-Repetitive Surge Current	I _{FSM}	46	А	
Operating Junction temperature	TJ	-55 to 175	°C	
Storage Temperature Range	T _{STG}	-65 to 175	°C	

Electrical Characteristics T_J = 25°C unless otherwise stated

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Maximum instantaneous forward voltage ¹	V _{F1}	V _{RWM} = 650V, I _{FM} = 3A	-	1.40	1.70	V
	V _{F2}	V _{RWM} = 650V, I _{FM} = 3A, T _J = 175°C	-	1.60	2.00	V
Maximum reverse leakage current ¹	I _{RM} @ V _{RM}	V _R = 650V	-	0.03	2	μА
		V _R = 650V, T _J = 175°C	-	0.3	20	
Junction Capacitance	C _T	$V_R = 0V$, $f = 1MHz$,	-	230	-	pF
Reverse Recovery Charge	Q _C	$V_R = 400V$, $I_F = 3A$, $di/dt = 200A/\mu s$	-	14.35	-	nC
Capacitance Stored Energy	Ec	V _R = 400V	-	3.51	-	μJ

^{1.} Pulse Width≤ 300µs, Duty Cycle ≤ 2.0%

Typical Characteristics T_J = 25°C unless otherwise stated

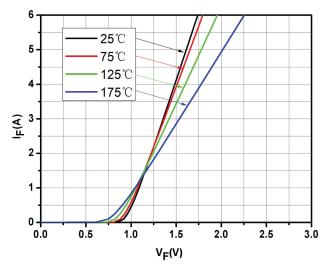


FIGURE 1. Forward Voltage Characteristics

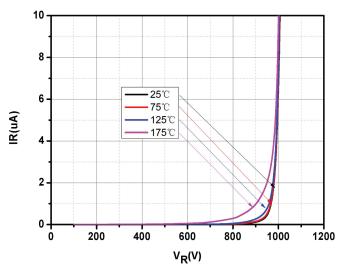


FIGURE 2. Reverse Characteristics

650V 3A SiC Schottky Diode - SiS650S03AS

Rev 1.0 30/10/23

Typical Characteristics T_J = 25°C unless otherwise stated

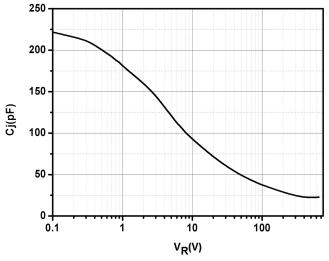


FIGURE 3. Capacitance Versus Reverse Voltage

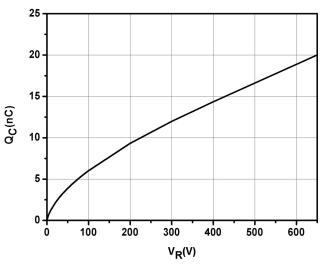


FIGURE 4. Total Capacitance Charge Versus Reverse Voltage

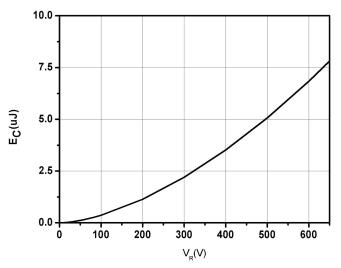
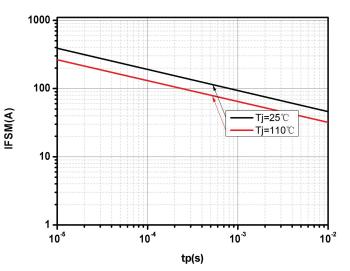



FIGURE 5. Capacitance Stored Energy

FIGURE 6. Non-repetitive Peak Forward Surge Current Versus Pulse Duration

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

