

Single-supply voltage-output temperature sensor in bare die form

Description

The SiS60A measures temperature over a wide -60°C to 125°C range. The device operates from a single supply and provides a linear voltage output with temperature coefficient of 6.25mV/° C. By design DC offset of +424 mV permits measurement of negative temperature without need for negative supply. Nominal output range is within 49mV (-60°C) and 1205mV (125°C). Output precision is calibrated on-die to ±2% max at 25°C and ±4% max over the full range. 2.7V operation & 125µA max consumption enable logic gate outputs to power this device, which combines intrinsic shutdown capability with simplified integration.

Ordering Information

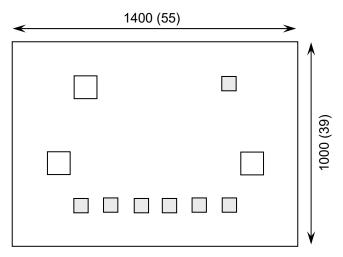
The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection + MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

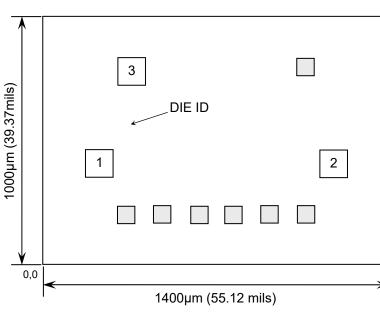
- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Ceramic Package On request

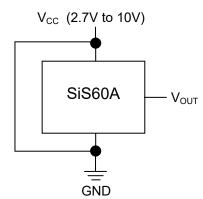
Features:

- Wide temperature range: -60 to +125°C
- Single-supply range: 2.7-10V
- ±1% typical accuracy at 25°C
- ±2% typical accuracy over -60 to +125°C range
- Low supply current: 125µA maximum
- Minimal self-heating: <= 0.1°C in still air</p>
- ESD rated to 2kV HBM

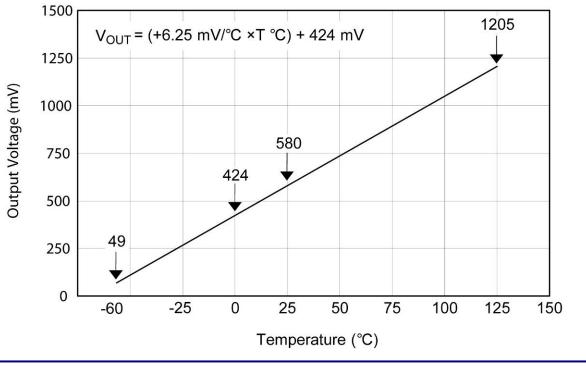
Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1400 x 1000 55 x 39	µm mils
Minimum Bond Pad Size	112 x 112 4.4 x 4.4	μm mils
Die Thickness	350 (±20) 13.78 (±0.79)	
Top Metal Composition	Al 1%Si 1.1µm	
Back Metal Composition	N/A – Bare Si	


Pad Layout and Functions

Rev 1.0 04/04/20



PAD FUNCTION		COORDINATES (µm)		
		X	Y	
1	V _{cc}	174.5	350	
2	V _{OUT}	1124	350	
3	GND	300	724	
CONNECT CHIP BACK TO GND				

Simplified Schematic

Output Voltage versus Temperature

Absolute Maximum Ratings¹

Absolute Maximum Ra	ungs		04/04/20
PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage Range	V _{CC}	-0.2 to +12	V
Output Voltage	V _{OUT}	-0.6 to V _{CC} +0.6	V
Load Current	I _{LOAD}	10	mA
Input Current (Any pin)	I _{IN}	5	mA
Storage Temperature	T _{STG}	-65 to +150	°C
Operating Junction Temperature	TJ	-60 to +125	°C
Thermal Resistance ²	R _{0JA}	162	°C/W
Electrostatic Discharge (HBM)	V _{ESD}	2	kV

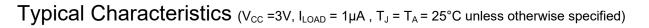
1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Die assembled in TO-92 package in still air.

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNITS
DC Supply Voltage	V _{cc}	2.7	10	V
Load Current	I _{LOAD}	-	1	μA
Operating Temperature	T _A	-60	+125	°C

DC Electrical Characteristics ($V_{CC} = 3V$, $I_{LOAD} = 1\mu A$, $T_J = T_A = 25^{\circ}C$ unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNITS
	STMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Accuracy	AT	$T_A = T_J = 25^{\circ}C$	-2	±1	+2	°C
	ΔT_1	T _A = T _J = Full Range	-4	±2	+4	
Output Voltage	V _{OUT}	0°C	-	424	-	mV
Non-linearity	-	-	-0.8	-	+0.8	°C
Sensor Gain	-	T _A = T _J = Full Range	6.00	6.25	6.50	mV/°C
Output Impedance	R _{OUT}	T _A = T _J = Full Range	-	-	800	Ω
		$3V \le +V_{CC} \le 10V$,	-0.3	-	0.3	mV/V
Line Regulation	ΔV _{OUT}	$T_A = T_J = Full Range$	0.0			
Line Regulation		$2.7V \le +V_{CC} \le 3.3V$,	-3	-	3	mV
		T _A = T _J = Full Range				
	I _{CC}	2.7V ≤ +V _{CC} ≤ 10 V, T _A = T _J = 25°C	-	82	110	
Quiescent Current					[μA
		$2.7V \le +V_{CC} \le 10 V$,	-		125	
		T _A = T _J = Full Range				<u> </u>
Quiescent Current Change	ΔI _{CC}	$2.7V \le +V_{CC} \le 10 V$	-	5	-	μΑ
Temperature				0.2		
coefficient of Quiescent current	-	-	-	- 0.2	-	µA/°C
Long-term stability	-	T _J = T _{MAX} = 125°C for 1000 hours	-	±0.2	-	°C


Rev 1.0

04/04/20

Analog Tempera

Analog Temperature Sensor – SiS60A

Rev 1.0 04/04/20

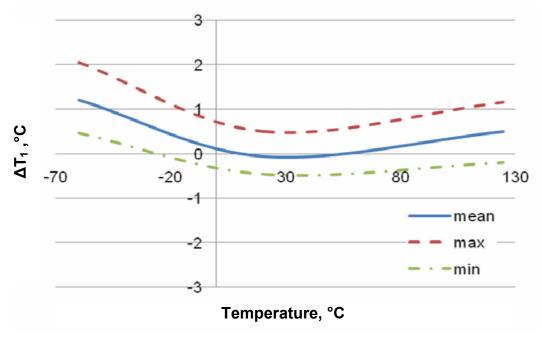
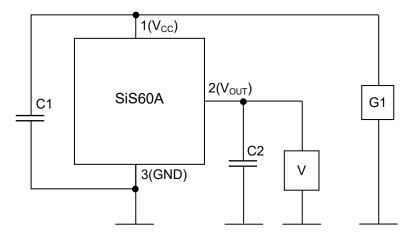
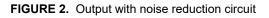
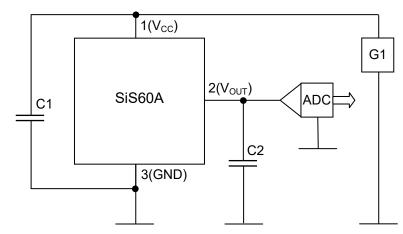




FIGURE 1. Temperature measurement accuracy

Typical Applications

 $C1-0.1\mu F\pm 20\%\ capacitor-Optional\ by-pass\ filter\ for\ noisy\ environments\\ C2-1\mu F\pm 20\%\ capacitor-Optional\ 199-Hz\ low-pass\ filter\ for\ noisy\ environments\\ G1-DC\ supply\ 2.7V\ -\ 10V\\ V\ -\ Voltmeter$



Typical Applications continued

Rev 1.0 04/04/20

 $\begin{array}{l} C1-0.1\mu F \pm 20\% \ capacitor - Optional by-pass filter for noisy environments\\ C2-1\mu F \pm 20\% \ capacitor - Optional 199-Hz \ low-pass filter for noisy environments\\ G1-DC \ supply 2.7V - 10V\\ ADC - Analog \ to \ Digital \ Converter\end{array}$

FIGURE 3. Output to ADC with noise reduction circuit

FIGURE 6. Logic device drive with intrinsic shutdown

Formulae

Linear Transfer Function

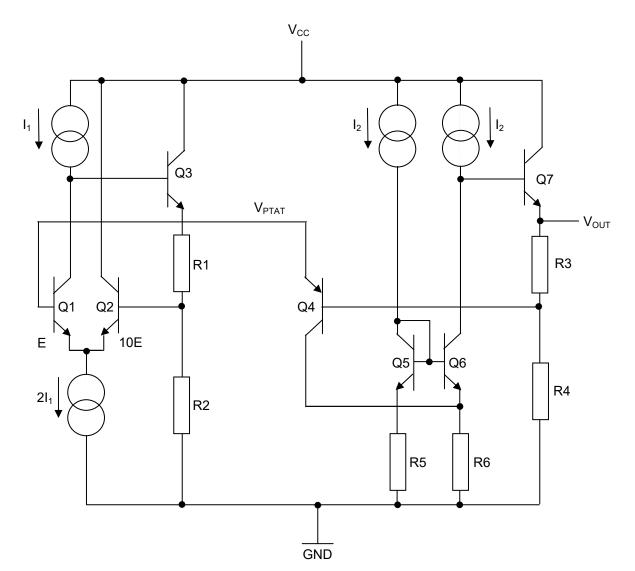
 $V_{OUT} = (6.25 \text{mV}/^{\circ}\text{C} \times \text{T}^{\circ}\text{C}) + 424 \text{mV}$

Where:

- T = Temperature
- V_{OUT} = SiS60A output voltage.

Die Self-Heating Calculation

 $T_{J} = T_{A} + R_{\theta JA} [(V_{CC} | I_{CC}) + (V_{CC} - V_{OUT}) | I_{LOAD}]$


- Where:
 - I_{CC} = SiS60A quiescent current
 - I_{LOAD} = The load current on the SiS60A output

Block Diagram

Rev 1.0 04/04/20

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

