

Positive Adjustable 1A Low-Dropout Voltage Regulator in bare die form

Rev 1.1 30/03/22

Description

SiS5219A is optimised to deliver up to 1A peak output current for start-up conditions where high inrush current is demanded. Output voltage is set by x2 external resistors and enabled or shut down by CMOS or TTL signalling. The device exhibits low dropout voltage and ground current, when disabled current consumption drops to near zero. The part is optimised for ultra-low noise performance delivering 500nV/√Hz typical and lower with an optional bypass capacitor. Rugged with high stability, internal limiting + thermal shutdown features for overload immunity, the part suits use in high performance high reliability applications.

Ordering Information

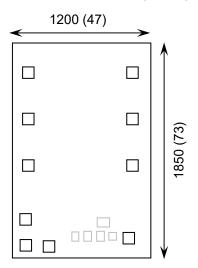
The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection+ MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

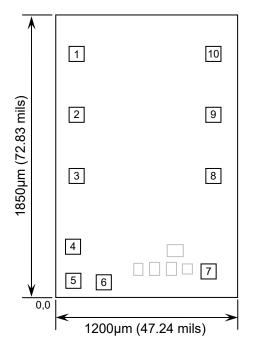
- Default Die in Waffle Pack (288 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Tape & Reel On request
- In Metal or Ceramic package On request

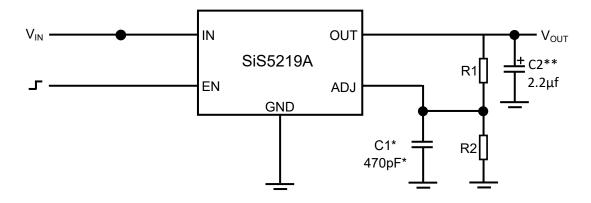
Features:

- Wide V_{IN} 2.4V 16V
- Output current capability: 1A
- Low dropout voltage:
 - \circ < 330 mV (I_{OUT} = 500mA)
 - \circ < 550 mV (I_{OUT} = 1000mA)
- 0.003% Line, 0.2% Load regulation (Typ)
- Low ground current: < 13mA (I_{OUT} = 500mA)
- Ultra-Low output noise: 300 nV/√Hz with C_{BYPASS}
- CMOS/TTL-Compatible Enable/Shutdown Control
- Near-Zero Shutdown Current
- Current + thermal limiting + rev. polarity protection
- Low temperature coefficient.

Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1200 x 1850 47 x 73	µm mils	
Minimum Bond Pad Size	100 x 100 3.94 x 3.94	μm mils	
Die Thickness	280 (±20) 11.02 (±0.79)	μm mils	
Top Metal Composition	Al		
Back Metal Composition	Ti/Ni/Ag		


Rev 1.1 30/03/22

Pad Layout and Functions

PAD	FUNCTION	COORDINA	ATES (mm)		
ו אט	TONOTION	X	Y		
1	V _{OUT}	0.120	1.514		
2	V _{OUT}	0.120	1.134		
3	V _{OUT}	0.120	0.754		
4	V _{OUT}	0.095	0.315		
5	ADJ	0.095	0.100		
6	GND	0.290	0.095		
7	EN	0.945	0.160		
8	V _{IN}	0.975	0.754		
9	V _{IN}	0.975	1.134		
10	V _{IN}	0.975	1.514		
CONNECT CHIP BACK TO GND					

Typical Application

1.24V - 16V Adjustable Regulator

$$V_{OUT} = 1.242 V \times (\frac{R2}{R1} + 1)$$

* Include the optional bypass capacitor from ADJ to GND for ultra-low output noise.

** C2 is not required for stability; however it does improve transient response.

For optimum stability and transient response locate C1 C2 as close as possible to the regulator.

Although ADJ is a high-impedance input, for best performance, R2 should not exceed 470 kΩ

Absolute Maximum Ratings¹

Rev 1.1 30/03/22

PARAMETER	SYMBOL	VALUE	UNIT	
Input–Output Voltage differential	V _{IN} - V _{OUT}	20	V	
Power Dissipation	P _D	Internally Limited		
Operating Junction Temperature	T _J	-40 to 125	°C	
Storage Temperature	T _{STG}	-65 to 150	°C	

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNIT
Input Voltage	V _{IN}	2.4	16	V
Enable Voltage	V _{EN}	0	V _{IN}	V
Output Current	I _{OUT}	0.1	1000	mA
Operating Junction Temperature Range	TJ	-40 to	125	°C

DC Electrical Characteristics

 $V_{\text{IN}} = V_{\text{OUT}} + 1V$, $C_{\text{OUT}} = 2.2 \mu\text{F}$, $I_{\text{OUT}} = 10 \text{mA}$, $V_{\text{EN}} = 2.25 \text{V}$, $-40 ^{\circ}\text{C} < \text{T}_{\text{J}} < +125 ^{\circ}\text{C}$ (unless noted otherwise)

PARAMETER	SYMBOL TEST CONDITIONS			TYP	MAX	UNITS
FARAIVIETER	STIVIDUL		MIN	ITP	IVIAA	UNITS
Reference Voltage	V _{REF}	$2.4V \le V_{IN} \le 16V$, $100\mu A \le I_L \le 1A$, $T_J = 25^{\circ}C$	1.228	1.24	1.252	V
		2.4V ≤ V _{IN} ≤16V,100µA ≤ I _L ≤1A	1.215	-	1.265	
		1.8V≤V _{OUT} ≤(V _{IN} -1V),100µA≤I _L ≤1A	1.203	1.24	1.277	V
Reference Voltage Temperature Coefficient	$\Delta V_{REF}/\Delta T$		-	20	-	ppm/°C
Line Regulation	ΔV _{OUT}	V _{IN} = V _{OUT} +1V to 16V, I _{OUT} =10mA, T _J =25°C	-	0.003	0.05	% / V _{OUT}
		$V_{IN} = V_{OUT} + 1V$ to 16V, $I_{OUT} = 10$ mA	-	-	0.1	
Load Regulation ²		I _{OUT} = 100μA to 1A, T _J =25°C	-	0.2	1.0	% / A
Load Negulation		I _{OUT} = 100μA to 1A	-	-	1.4	
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/\Delta T$		-	40	100	ppm/°C
	V _{IN} - V _{OUT}	I _{OUT} = 100μA, Τ _J =25°C	-	30	60	mV
		I _{OUT} = 100μA	-	-	80	
		I _{OUT} = 100mA, T _J =25°C	-	100	200	
		I _{OUT} = 100mA	-	-	250	
Dropout Voltage ³		I _{OUT} = 500mA, T _J =25°C	-	250	330	
		I _{OUT} = 500mA	-	-	410	
		I _{OUT} = 750mA, T _J =25°C	-	310	440	
		I _{OUT} = 750mA	-	-	500	
		I _{OUT} = 1A, T _J =25°C	-	400	550	
		I _{OUT} = 1A	-	-	630	

Rev 1.1 30/03/22

DC Electrical Characteristics

 $V_{\text{IN}}\!=\!V_{\text{OUT}}\!+\!1V,\,C_{\text{OUT}}\!=\!2.2\mu\text{F},\,I_{\text{OUT}}\!=\!10\text{mA},\,V_{\text{EN}}\!=\!2.25V,\,-\!40^{\circ}\text{C}\!<\!T_{\text{J}}\!<\!+\!125^{\circ}\text{C}$ (unless noted otherwise)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Enable Input Voltage	V _{EN}	Logic Low (off). T _J = 25°C	-	-	0.40	
		Logic Low (off)	-	-	0.18	V
		Logic High (on)	2.0	-	-	
Enable Input Current	I _{EN}	V _{EN} = 0.4V. T _J = 25°C	-	-	1	
		V _{EN} = 0.18V	-	-	2	
		V _{EN} = 0.20V. T _J = 25°C	-	12	20	μA
		V _{EN} = 0.20V	-	-	30	
		$I_{OUT} = 100 \mu A, V_{IN} = V_{OUT} + 1.0 V,$ $T_J = 25 ^{\circ} C$	-	0.08	0.13	
		$I_{OUT} = 100 \mu A, V_{IN} = V_{OUT} + 1.0 V$	-	-	0.17	
		$I_{OUT} = 100 \text{mA}, V_{IN} = V_{OUT} + 1.0 \text{V},$ $T_{J} = 25 ^{\circ}\text{C}$	-	0.95	2	
		I _{OUT} = 100mA, V _{IN} = V _{OUT} +1.0V	-	-	3	mA
	I _{GND}	$I_{OUT} = 500 \text{mA}, V_{IN} = V_{OUT} + 1.0 \text{V},$ $T_{J} = 25 ^{\circ}\text{C}$	-	9	13	
Ground Pin Current ⁴		I _{OUT} = 500mA, V _{IN} = V _{OUT} +1.0V	-	-	15	
		$I_{OUT} = 750 \text{mA}, V_{IN} = V_{OUT} + 1.0 \text{V},$ $T_J = 25 ^{\circ}\text{C}$	-	18	25	
		$I_{OUT} = 750 \text{mA}, V_{IN} = V_{OUT} + 1.0 \text{V}$	-	-	30	
		$I_{OUT} = 1A, V_{IN} = V_{OUT} + 1.0V,$ $T_{J} = 25$ °C	-	31	50	
		$I_{OUT} = 1A, V_{IN} = V_{OUT} + 1.0V$	-	-	60	
		V _{EN} = 0.4V. T _J = 25°C	-	-	3	μA
		V _{EN} = 0.18V	-	-	8	μΛ
Adjustment Pin Current	I _{ADJ}	T _J = 25°C	-	40	80	nA
, tajasanent in Sanoni			-	-	120	
Adjustment Pin Current Change	ΔI _{ADJ} /ΔΤ		-	0.1	-	nA/°C
Ripple Rejection	PSRR	f = 120Hz	60	-	-	dB
Current Limit	I _{LIMIT}	V _{OUT} = 0V. T _J = 25°C	-	3000	-	mA
		V _{OUT} = 0V	-	-	5000	
Output Noise	e	$I_{OUT} = 50\text{mA},$ $C_{OUT} = 2.2\mu\text{F}, C_{bypass} = 0$	-	500	-	nV/√Hz
Output Noise	: Noise e _{no}	I_{OUT} = 50mA, C_{OUT} = 2.2 μ F, C_{bypass} = 470 μ F	-	300	-	ΙΙν/ ΥΠΖ

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. 3. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. 4. I_{GND} is the quiescent current. I_{IN} = I_{GND} + I_{OUT}.

Typical Electrical Characteristics, T_J = 25°C (unless noted otherwise)

Rev 1.1 30/03/22

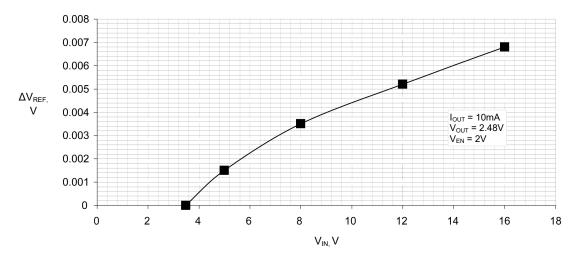


Figure 1 – Reference Voltage stability Versus Input Voltage

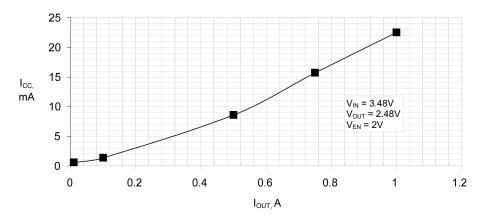


Figure 2 – Supply Current Versus Output Current

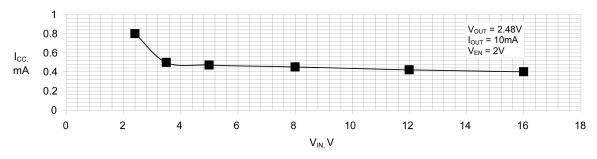


Figure 3 – Supply Current Versus Input Voltage

Typical Electrical Characteristics, T_J = 25°C (unless noted otherwise)

Rev 1.1 30/03/22

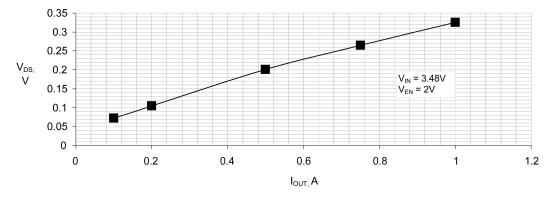


Figure 4 – V_{DS} Versus Output Current

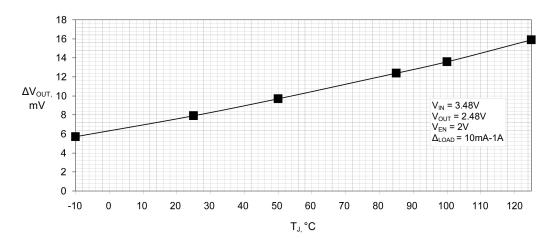
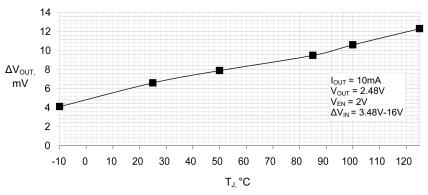



Figure 5 – ΔV_{OUT} at ΔI_{LOAD} Versus Junction Temperature

Figure 6 – ΔV_{OUT} at ΔV_{IN} Versus Junction Temperature

Rev 1.1 30/03/22

Typical Electrical Characteristics, T_J = 25°C (unless noted otherwise)

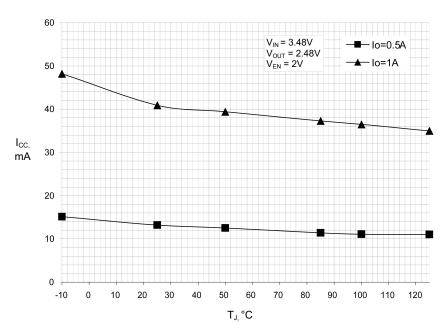
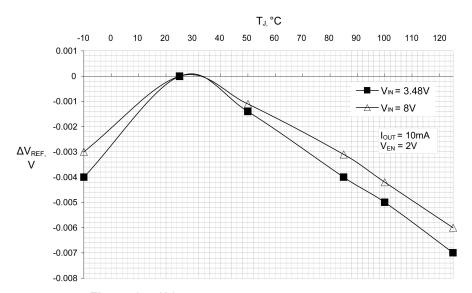



Figure 7 – Supply Current Versus Junction Temperature

Figure 8 – ΔV_{REF} Versus Junction Temperature, I_{OUT} = 10mA

Rev 1.1 30/03/22

Typical Electrical Characteristics, T_J = 25°C (unless noted otherwise)

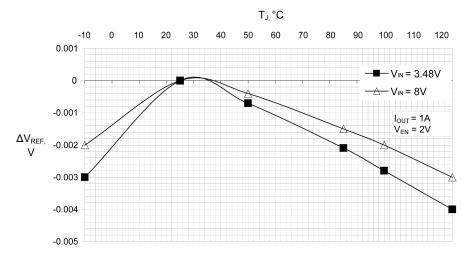


Figure 9 – ΔV_{REF} Versus Junction Temperature, $I_{OUT} = 1A$

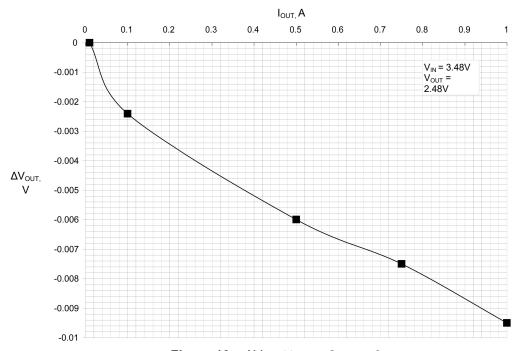


Figure 10 – ΔV_{OUT} Versus Output Current

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

