

N-Channel Enhancement Mode Field Effect Transistor in bare die form

Rev 1.0 07/03/25

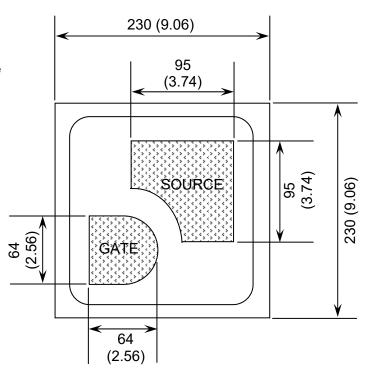
Features:

- High Density Cell Design for Low R_{DS(ON)}
- Low Threshold Voltage
- ESD Protected Gate (350V) via Integrated Zener Diode
- Suited for High-Speed Switching & Analog Switching
- High Reliability Tested Grades for Military + Space

Ordering Information:

The following part suffixes apply:

- No suffix MIL-STD-750 /2072 Visual Inspection
- "H" MIL-STD-750 /2072 Visual Inspection + MIL-PRF-38534 Class H LAT
- "K" MIL-STD-750 /2072 Visual Inspection + MIL-PRF-38534 Class K LAT
- LAT = Lot Acceptance Test.


For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification

Supply Formats:

- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- With additional electrical selection On request
- Sawn as pairs or adjacent pair pick On request
- Assembled in package On request

Die Dimensions in µm (mils)

DIE BACK = DRAIN

Mechanical Specification

Die Size (Excluding Saw Street)	230 x 230 9.06 x 9.06	µm mils	
Gate Pad Size	64 x 64 μm 2.56 x 2.56 mils		
Source Pad Size	95 x 95 3.74 x 3.74	µm mils	
Die Thickness	100 (±10) 3.94 (±0.39)	μm mils	
Top Metal Composition	Al-Si 3.5µm		
Back Metal Composition	Au 1.2µm		

Small Signal MOSFET – SiS20VN02

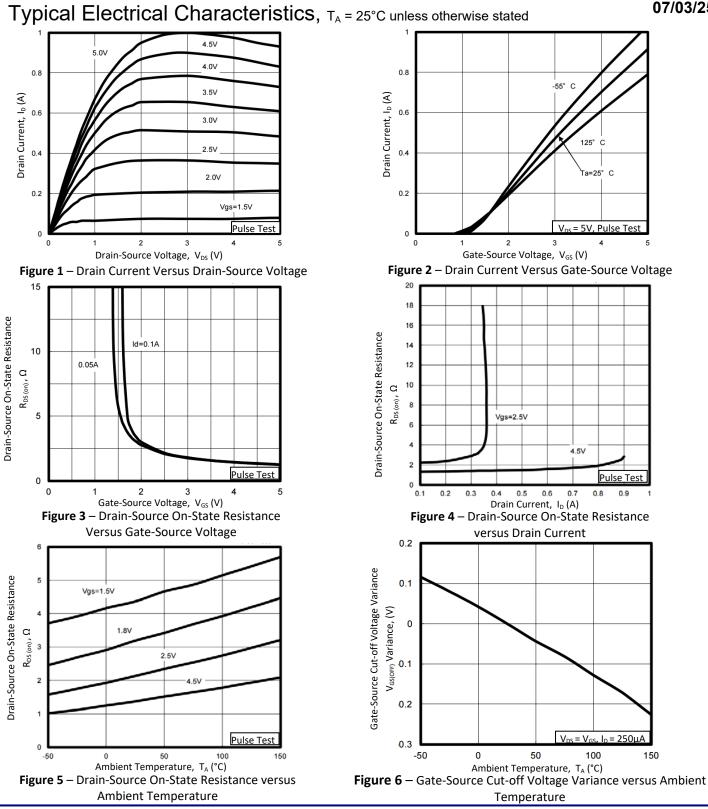
Rev 1.0 07/03/25

Absolute Maximum Ratings ¹ $T_J = 25^{\circ}C$ unless otherwise stated			07/03/25	
PARAMETER	SYMBOL	VALUE	UNIT	
Drain-to-Source Voltage	V _{DSS}	20	V	
Gate-Source Voltage - Continuous	V _{GSS}	±10	V	
Maximum Drain Current - Continuous		230	mA	
Maximum Drain Current - Pulsed	ID	920		
Maximum Power Dissipation Derated above 25°C ²	PD	300	mW	
THERMAL CHARACTERISTICS				
Junction & Storage Temperature	T _{J,} T _{stg}	-55 to 150	°C	
Thermal Resistance, Junction to Ambient ³	R _{0JA}	415	°C/W	

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Performance at die level dependent on assembly method and substrate choice 3. Mounted on glass epoxy substrate.

Electrical Characteristics T_J = 25°C unless otherwise stated

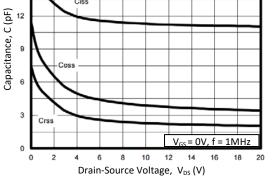
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 100\mu A$	20	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 20V, V _{GS} = 0	-	-	500	nA
Gate-Body Leakage, Forward	I _{GSSF}	V_{GS} = 10V, V_{DS} = 0V	-	-	1	μA
Gate-Body Leakage, Reverse	I _{GSSR}	V_{GS} = -10V, V_{DS} = 0V	-	-	-1	μA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.5	-	1.0	V
Static Drain-Source On-Resistance ⁴	R _{DS(ON)}	V_{GS} = 4.5V, I_{D} = 100mA	-	1.4	2.5	Ω
		V_{GS} = 2.5V, I_{D} = 50mA	-	2.2	3.5	
		V _{GS} = 1.8V, I _D = 20mA	-	3.3	5.5	
		V_{GS} = 1.5V, I_{D} = 10mA	-	4.5	9.5	
		V_{GS} = 1.2V, I_{D} = 1mA	-	8.6	-	
Forward Transfer Admittance ⁴	Yfs	$V_{DS} = 5V, I_D = 125mA$	0.18	26	-	S
Body Diode Forward Voltage	VF	$V_{GS} = 0V, I_F = 10mA$	-	0.72	1.0	V
DYNAMIC CHARACTERISTICS ⁵						
Input Capacitance	C _{iss}	V_{DS} = 15V, V_{GS} = 0V, f = 1MHz	-	11	-	pF
Output Capacitance	C _{oss}	V_{DS} = 15V, V_{GS} = 0V, f = 1MHz	-	3.6	-	
		V_{DS} = 0V, V_{GS} = 0V, f = 1MHz	-	11.4	-	
Reverse Transfer Capacitance	C _{rss}	V_{DS} = 15V, V_{GS} = 0V, f = 1MHz	-	2.2	-	
Turn-On Delay Time	t _{d(on)}	V_{GS} = 4.5V, I _D = 0.2A, V _{DD} = 10V	-	8	-	
Rise Time	tr		-	6	-	ne
Turn-Off Time	t _{d(off)}		-	19	-	ns
Fall Time	t _f		-	11	-	


4. Pulse Test: Pulse width ≤ 80µs, Duty Cycle ≤ 1%. 5. Not production tested in die form, characterized by chip design & SOT-23 package assembly.

Small Signal MOSFET – SiS20VN02

Rev 1.0 07/03/25

www.siliconsupplies.com



Small Signal MOSFET – SiS20VN02

Rev 1.0 07/03/25

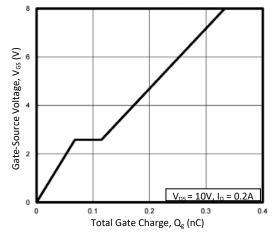
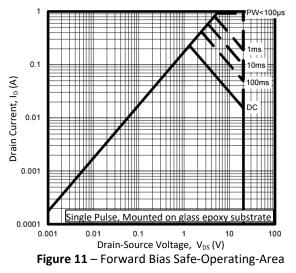
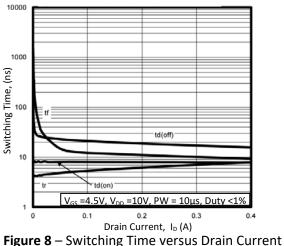
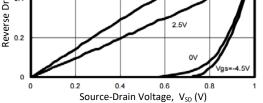
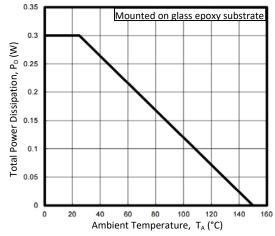
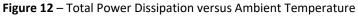





Figure 9 – Gate-Source Voltage versus Total Gate Charge





Rev 1.0 07/03/25

Typical Electrical Characteristics, T_A = 25°C unless otherwise stated

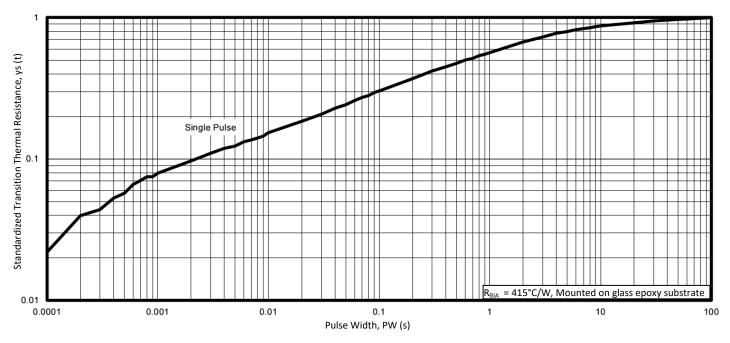


Figure 13 – Standardized Transition Thermal Resistance versus Pulse Width

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

