

Hex Schmitt Trigger Inverter in bare die form

Description

The MM54C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N-channel and P-channel enhancement transistors. The positive and negative going threshold voltages, V_{T+} and V_{T-}, show low variation with respect to temperature (typ. 0.0005V/°C at V_{CC} = 10V), and hysteresis, V_{T+} - V_{T-} \ge 0.2 V_{CC} is guaranteed. All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Features:

Wide supply voltage range: 3V to 15V

Rev 1.0

17/02/2023

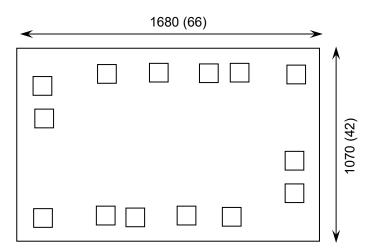
- High noise immunity: 0.70 V_{CC} (typ.)
- Low power TTL compatibility:
 - o 0.40 V_{CC} (typ.)
 - \circ 0.20 V_{CC} (guaranteed)
 - Hysteresis:
 - o 0.40 V_{CC} (typ.)
 - \circ ~ 0.20 V_{CC} (guaranteed).

Ordering Information

The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection + MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space) + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.


For further information on LAT process flows see below.

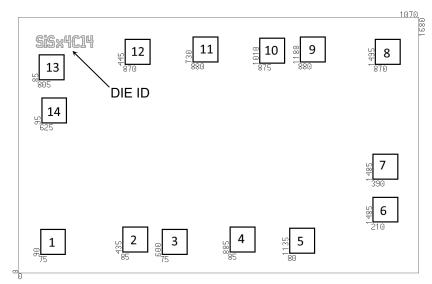
www.siliconsupplies.com\quality\bare-die-lot-qualification

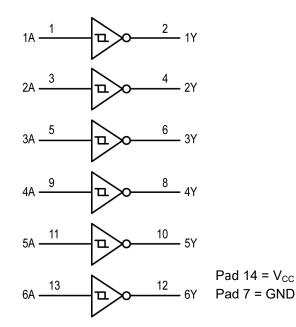
Supply Formats:

- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Ceramic Package On request

Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1680 x 1070 66.14 x 42.13	µm mils	
Minimum Bond Pad Size	105 x 105 4.713 x 4.13	µm mils	
Die Thickness	350 (±20) 13.78 (±0.79)	µm mils	
Top Metal Composition	Al 1%Si 1.1µm		
Back Metal Composition	N/A – Bare Si		


Pad Layout and Functions

Rev 1.0 17/02/2023

PAD FUNCTION	COORDINATES (µm)			
	X	Y		
1	1A	90	75	
2	1Y	435	85	
3	2A	600	75	
4	2Y	885	85	
5	ЗA	1135	80	
6	3Y	1485	210	
7	GND	1485	390	
8	4Y	1495	870	
9	4A	1180	880	
10	5Y	1010	875	
11	5A	730	880	
12	6Y	445	870	
13	6A	85	805	
14	V _{cc}	95	625	
	CONNECT CH	IIP BACK TO	V _{CC}	

Logic Diagram

Function Table

INPUT	OUTPUT
Α	Y
L	Н
H	L

Rev 1.0 17/02/2023

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE	UNIT
Voltage at any input pin	V _{IN}	-0.3 to V _{CC} + 0.3	V
Voltage at any output pin	V _{OUT}	-0.3 to V _{CC} + 0.3	V
Operating V _{CC} range	V _{CC}	3 to 15	V
Absolute maximum V _{CC}	V _{CC(MAX)}	18	V
Maximum Power Dissipation ²	PD	700	mW
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic DIP package, results in die form are dependent on die attach and assembly method.

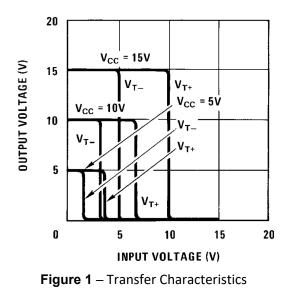
DC Electrical Characteristics T_A = -55 to +125°C unless otherwise stated

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS						
Positive Going Threshold Voltage		V _{CC} = 5V 3.0 3	3.6	4.3	V	
	V _{T+}	V _{CC} = 10V	6.0	6.8	8.6	V
		V _{CC} = 15V	9.0	10.0	12.9	V
Negative Going Threshold Voltage		$V_{\rm CC}$ = 5V	0.7	1.4	2.0	V
	V _{T-}	V _{CC} = 10V	1.4	3.2	4.0	V
		V _{CC} = 15V	2.1	5.0	6.0	V
Hysteresis		$V_{\rm CC}$ = 5V	1.0	2.2	3.6	V
	V _{T+} - V _{T-}	V _{CC} = 10V	2.0	3.6	7.2	V
		V _{CC} = 15V	3.0	5.0	10.8	V
Logical "1" Output Voltage	V	$V_{CC} = 5V, I_0 = -10\mu A$	4.5	-	-	V
	V _{OUT(1)}	V _{CC} = 10V, I _O = -10µA	9.0	-	-	V
Logical "0" Output Voltage	V _{OUT(0)}	$V_{CC} = 5V, I_0 = 10\mu A$	-	-	0.5	V
Logical o Output voltage	V OUT(0)	$V_{CC} = 10V, I_0 = 10\mu A$	-	-	1.0	V
Logical "1" Input Current	I _{IN(1)}	V _{CC} = 15V, V _{IN} = 15V	-	0.005	1.0	μA
Logical "0" Input Current	I _{IN(0)}	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005	-	μA
Supply Current	I _{CC}	V _{CC} =15V,V _{IN} =0V/15V	-	0.05	15	μA
		$V_{CC} = 5V, V_{IN} = 2.5V$	-	20	-	μA
Supply Current ³	I _{CC}	V _{CC} = 10V, V _{IN} = 5V	-	200	-	μA
		V _{CC} = 15V, V _{IN} = 7.5V	-	600	-	μA

3. Only one of the six inputs is at $\frac{1}{2}$ V_{CC}; the others are either at V_{CC} or GND.

CMOS High Voltage Logic – MM54C14

Rev 1.0 16/07/2021

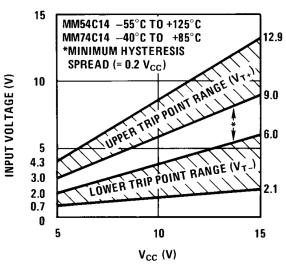

DC Electrical Characteristics $T_A = -55$ to +125°C unless otherwise stated

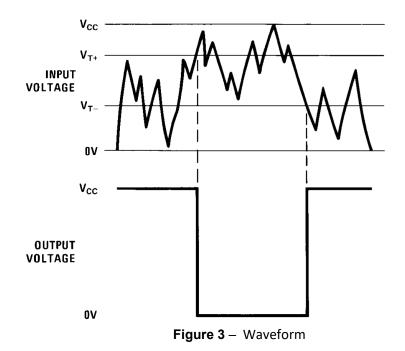
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CMOS/LPTTL INTERFACE						
Logical "1" Input Voltage	V _{IN(1)}	$V_{\rm CC} = 5V$	4.3	-	-	V
Logical "0" Input Voltage	V _{IN(0)}	$V_{\rm CC} = 5V$	-	-	0.7	V
Logical "1" Output Voltage	V _{OUT(1)}	V _{CC} = 4.5V,I _O = -360µA	2.4	-	-	V
Logical "0" Output Voltage	V _{OUT(0)}	V _{CC} =4.5V, I _O = 360µA	-	-	0.4	V
OUTPUT DRIVE CURRENT T _A = 25°C						
Output Source Current		$V_{CC} = 5V, V_{OUT} = 0V$	-1.75	-3.3	-	mA
(P-Channel)	ISOURCE	V_{CC} = 10V, V_{OUT} = 0V	-8.0	-15	-	mA
Output Source Current (N-Channel)	I _{SINK}	V_{CC} = 5V, V_{OUT} = V_{CC}	1.75	3.6	-	mA
	ISINK	V_{CC} = 10V, V_{OUT} = V_{CC}	8.0	16	-	mA
DYNAMIC ELECTRICAL CHARACTER	ISTICS ⁴ T _A = 25	°C, C _L = 50pF unless oth	erwise s	stated		
Propagation Delayt PD0.from Input to Outputt PD1	t _{PD0,}	$V_{\rm CC} = 5V$	-	220	400	ns
	t _{PD1}	V _{CC} = 10V	-	80	200	ns
Input Capacitance	C _{IN}	Any Input	-	5.0	-	pF
Power Dissipation Capacitance ⁵	C _{PD}	Per Gate	-	20	-	pF

4. Not production tested in die form, characterized by chip design.

5. Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

Typical Characteristics




Figure 2 – Guaranteed Trip Point Range

Typical Characteristics continued

Rev 1.0 16/07/2021

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

