

Single-supply linear-output temperature sensor in bare die form

Rev 1.1 28/04/20

Description

The LM135A precision linear-output temperature sensor is designed for simple calibration and ease of use. Output is derived from an integrated 2-terminal Zener with a breakdown voltage directly proportional to absolute temperature at 10mV/°K. Calibrated at +25°C, the LM135A has a typical accuracy of 0.3°C over a wide -55°C to 150°C temperature range. With less than 1 Ω dynamic impedance, performance is consistent across a current range of 450 μ A to 5mA. The device suits use as a general purpose sensor where its small size, low impedance and linear output enables simple circuit integration.

Ordering Information

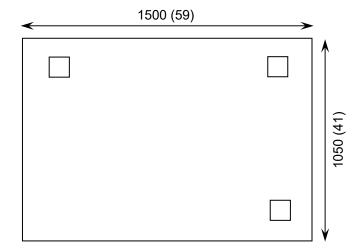
The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection+ MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

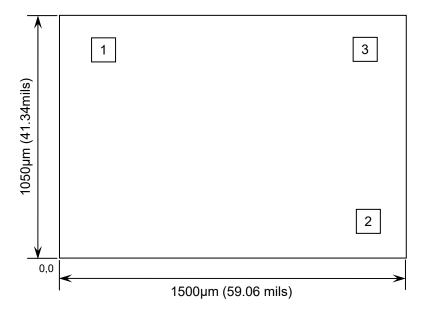
- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Hermetic Package On request

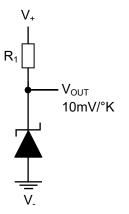
Features:

- Wide temperature range: -55 to +150°C
- 0.3% typical accuracy at 25°C
- Single-point calibration for high precision
- Operates from 450µA to 5mA
- <1Ω dynamic impedance</p>
- Linear output
- Intermittent operation capability at 200°C
- Small size for high integration

Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1500 x 1050 59 x 41	μm mils	
Minimum Bond Pad Size	104 x 104 4.09 x 4.09	μm mils	
Die Thickness	350 (±20) 13.78 (±0.79)	μm mils	
Top Metal Composition	Al 1%Si 1.1μm		
Back Metal Composition	N/A – Bare Si		


Rev 1.1 28/04/20

Pad Layout and Functions

PAD	FUNCTION	COORDIN	ATES (µm)
ואם	TONOTION	X	Y
1	V+	134	848
2	V-	1281	103
3	ADJ	1268	848
CONNECT CHIP BACK TO V- OR FLOAT			

Simplified Schematic

Calibration methodology and schematic

The LM135A response is proportional to absolute temperature with the extrapolated output of sensor going to 0V at 0°K (-273.15°C). Errors in output voltage versus temperature are only slope. Thus a calibration of the slope at one temperature corrects errors at all temperatures. The circuit output (calibrated or not) is given by the equation:

$$VOUT_T + VOUT_{To} \times \frac{T}{T_o}$$

Where:

- T is the unknown temperature
- T_O is the reference temperature (in °K).

Nominally, the output is calibrated at 10mV/°K.

Application Note:

Self-heating can decrease accuracy; LM135A should be operated at low current but sufficient enough to drive the sensor and calibration circuit to the maximum operating temperature. If used in surroundings where the thermal resistance is constant, the errors due to self-heating can be externally calibrated. This is possible if the circuit is biased with a temperature stable current. Heating will then be proportional to Zener voltage and therefore temperature. In this way, the error due to self-heating is proportional to the absolute temperature as scale factor errors.

V_{OUT} 10mV/°K

10kΩ*

* Calibrated for

2.982V at 25°C

Absolute Maximum Ratings¹

Rev 1.1 28/04/20

PARAMETER	SYMBOL	VALUE		UNIT
Reverse Current	I _R	15		mA
Forward Current	I _F	10		mA
Operating Temperature	T	Continuous	-55 to +150	°C
Operating Temperature T _{OPER}		Intermittent -55 to +200		O
Storage Temperature	T _{STG}	-65 to +150		°C

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.

Recommended Operating Conditions

PARA	METER	SYMBOL	MIN	MAX	UNITS
Temperature	Continuous	т.	-55	150	°C
remperature	Intermittent	I A	-55	200	
Forward Current		I _F	0.45	5	mA

Temperature Parameters² (T_A = 25°C unless otherwise specified)

PARAMETER	SYMBOL	OL CONDITIONS		LIMITS		UNITS
	STRIBOL	CONDITIONS	MIN	TYP	MAX	ONTO
Output Voltage	V _{OUT}	$T_J = 25^{\circ}C, I_R = 1mA$	2.97	2.98	2.99	V
Un-calibrated	ΔT_1	$T_A = 25^{\circ}C, I_R = 1mA$	-	0.5	1	°C
Temperature Error	ΔT_2	-55°C≤ T _A ≤ +150°C,I _R = 1mA	-	1.3	2.7	°C
25°C Calibrated	ΔT_3	-55°C≤ T _A ≤ +150°C,I _R = 1mA	-	0.3	1	°C
Temperature Error	ΔT_4	T _A = 200°C, Intermittent	-	2	-	°C
Non-linearity	ΔT_5	-55°C≤ T _A ≤ +150°C,I _R = 1mA	-	0.3	0.5	°C

Electrical Parameters² (T_A = 25°C unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS		LIMITS		UNITS
IANAMETER	STWIDGE	WBGE GONDING	MIN	TYP	MAX	ONITS
Output voltage change with current	ΔV _{OUT}	450μA ≤ I _R ≤ 5mA, Constant temperature	-	2.5	10	mV
Dynamic impedance	ΔR_1	$T_J = 25^{\circ}C, I_R = 1mA$	-	0.5	-	Ω
Temperature coefficient of output voltage	тс	$T_J = 25^{\circ}C, I_R = 1mA$	-	+10	-	mV/°C
		Still air	-	80	-	
Time constant	$ au_{T} $	Air 0.5m/s	-	10	-	s
		Stirred oil	-	1	-	
Time stability	T _{STAB}	T _J = 125°C	-	0.2	-	°C/1000h

^{2.} Accuracy measurements are made in a well-stirred oil bath. For other conditions, self-heating must be considered.

Rev 1.1 28/04/20

Typical Characteristics (T_J = 25°C unless otherwise specified)

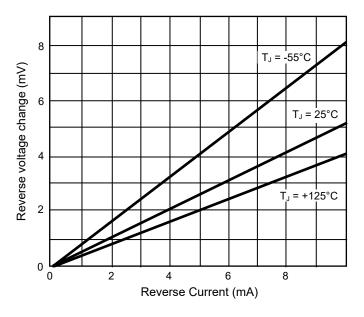


FIGURE 1. Reverse Voltage Change

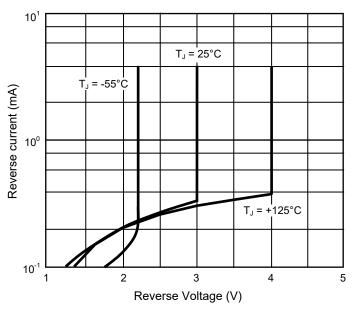


FIGURE 3. Reverse characteristics

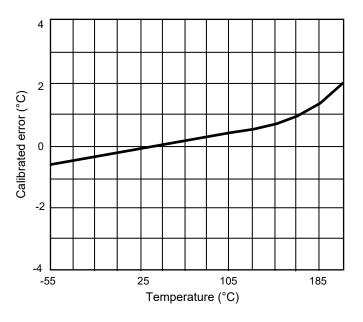


FIGURE 2. Calibrated error

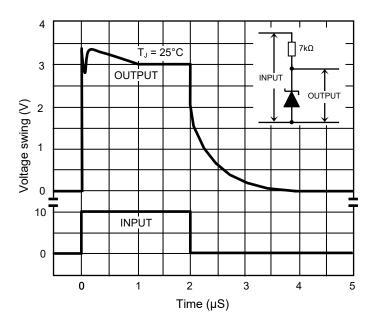


FIGURE 4. Response time

400

300

200

100

0

Thermal Resistance (°C /W)

Analog Temperature Sensor – LM135A

Rev 1.1 28/04/20

Typical Characteristics (T_J = 25°C unless otherwise specified)

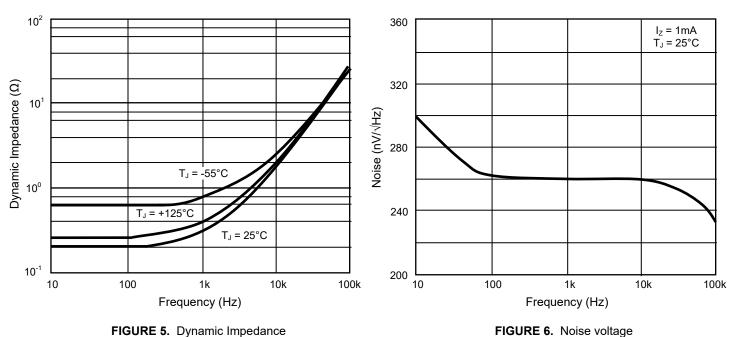
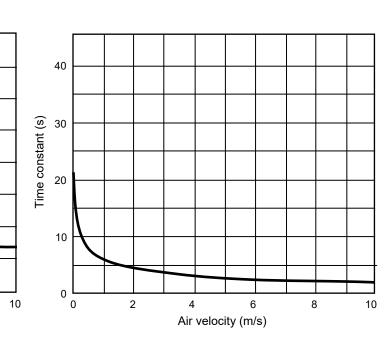
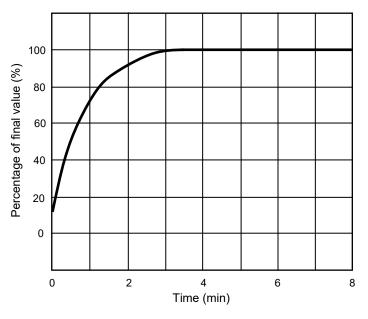



FIGURE 5. Dynamic Impedance

Air velocity (m/s) FIGURE 8. Thermal resistance, junction-to-air


FIGURE 9. Thermal time constant

8

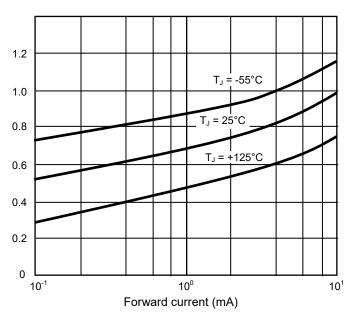
Rev 1.1 28/04/20

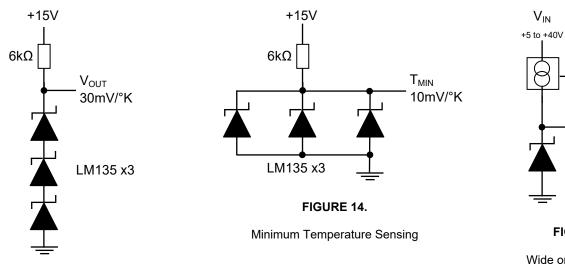
Typical Characteristics (T_J = 25°C unless otherwise specified)

100 (%) 80 Bo Locuting of the line of the locution of the locu

FIGURE 10. Thermal response in still air

FIGURE 11. Thermal response in stirred-oil bath




FIGURE 12. Forward characteristics

Typical Applications

Rev 1.1 28/04/20

LM334 68Ω V_{OUT} 10mV/°K LM135

FIGURE 15.

Wide operating supply

FIGURE 13.

Average Temperature Sensing

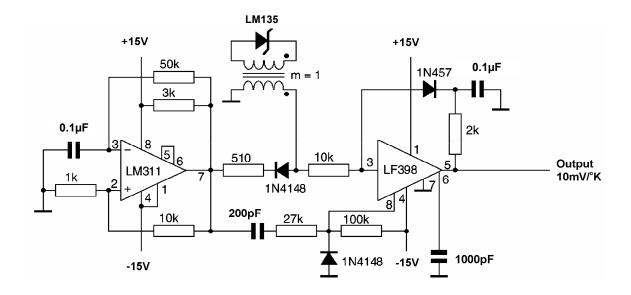
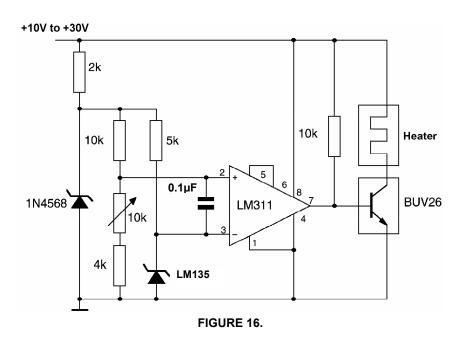
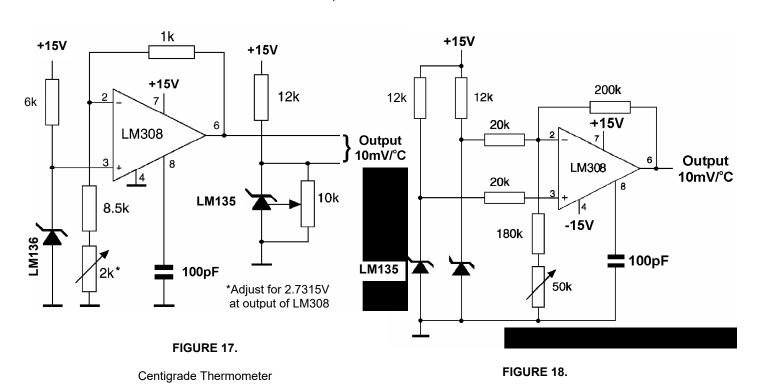


FIGURE 16.

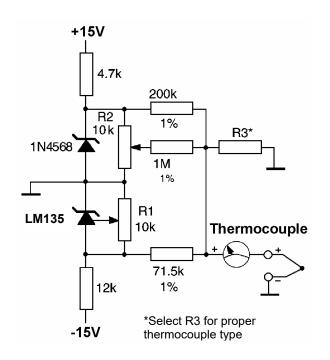

Isolated Temperature Sensor



Rev 1.1 28/04/20

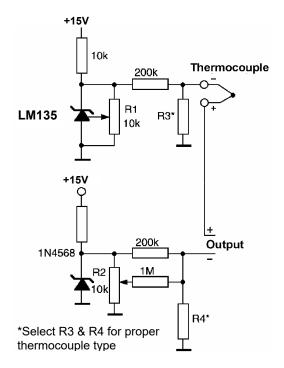
Typical Applications continued

Temperature Controller


Differential Temperature Sensor

Rev 1.1 28/04/20

Thermocouple compensation


Thermocouple	R3	SEEBECK Coefficient
J	377Ω	52.3µV/°C
Т	308Ω	42.8µV/°C
K	293Ω	40.8µV/°C
S	45.8Ω	6.4µV/°C

Adjustments:

- 1. Short 1N4568.
- Adjust R1 for SEEBECK coefficient times ambient temperature in degrees Kelvin across R3.
- 3. Short LM135 and adjust R2 for voltage across R3 corresponding to thermocouple type as below:

J	14.32mV	K	11.17mV
Т	11.9mV	S	1.768mV

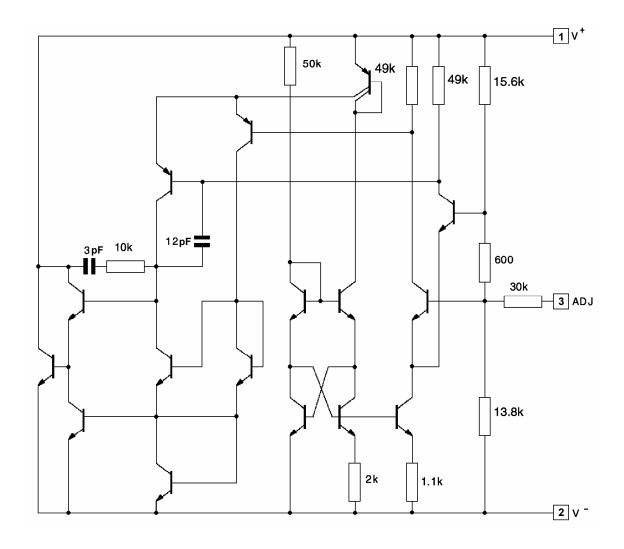
FIGURE 19. Thermocouple cold junction compensation (compensation for grounded thermocouple)

Thermocouple	R3	R4	SEEBECK Coefficient
J	1.05kΩ	365Ω	52.3µV/°C
Т	856Ω	315Ω	42.8µV/°C
K	816Ω	300Ω	40.8μV/°C
S	128Ω	46.3Ω	6.4µV/°C

Adjustments:

- 1. Adjust R1 for the voltage across R3 equal to the SEEBECK coefficient times ambient temperature in degrees Kelvin.
- 2. Adjust R2 for voltage across R4 corresponding to the thermocouple as below:

J 14.32mV K 11.17mV T 11.9mV S 1.768mV


FIGURE 20. Single power supply cold junction compensation

Circuit schematic

Rev 1.1 28/04/20

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

