CMOS High Voltage Logic - CD4541B

Programmable Timer in bare die form

Description

The CD4541B programmable timer consists of a 16-stage binary counter, integrated oscillator for use with an external capacitor and $x 2$ resistors, an automatic power-on reset circuit and output control logic. Power-on triggers automatic reset circuitry to initialize all counters. With power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16-stage counter divides the oscillator frequency ($f_{\text {osc }}$) with the nth stage frequency being $f_{\text {osc }} / 2^{n}$. Counter increments on positive clock edge.

Ordering Information

The following part suffixes apply:

- No suffix - MIL-STD-883 /2010B Visual Inspection
- "H" - MIL-STD-883 /2010B Visual Inspection + MIL-PRF-38534 Class H LAT
- "K" - MIL-STD-883 /2010A Visual Inspection (Space) + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.
For further information on LAT process flows see below.
www.siliconsupplies.com\quality\bare-die-lot-qualification

Supply Formats:

- Default - Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape - On request
- Unsawn Wafer - On request
- Die Thickness <> 350 $\mu \mathrm{m}$ (14 Mils) - On request
- Assembled into Ceramic Package - On request

Rev 1.0

11/06/20

Features:

- Available outputs $2^{8}, 2^{10}, 2^{13}$ or 2^{16}
- Built-in low-power RC oscillator \approx DC to 100 kHz
- External clock option (Pad 3) overrides oscillator
- Use as 2^{n} frequency divider or single transition timer
- $\mathrm{Q} / \overline{\mathrm{Q}}$ select provides output logic level flexibility
- Auto or master reset disables oscillator for lower P_{D}
- CD4K process benefits: Wide supply voltage range; Symmetrical outputs; Low I_{Q}; High noise immunity
- Direct drop-in replacement for obsolete components in long term programs.

Die Dimensions in $\mu \mathrm{m}$ (mils)

Mechanical Specification

Die Size (Unsawn)	1300×1430 51×56	$\mu \mathrm{m}$ mils
Minimum Bond Pad Size	85×85 	$\mu \mathrm{m}$ mils
Die Thickness	$350(\pm 20)$	$\mu \mathrm{m}$ mils
Top Metal Composition	$13.78(\pm 0.79)$	Al $1 \% \mathrm{Si} 1.1 \mu \mathrm{~m}$
Back Metal Composition	N/A - Bare Si	

Pad Layout and Functions

Truth Table

PAD	STATE	
	AUTO RESET OPERATING	AUTO RESET DISABLED
5 MASTER RESET	TIMER OPERATIONAL	MASTER RESET ON
8 Q/Q	OUTPUT INITIALLY LOW AFTER RESET	OUTPUT INITIALLY HIGH AFTER RESET
9	SINGLE CYCLE	RECYCLE
MODE	MODE	MODE

PAD	FUNCTION	COORDINATES (mm)	
		0.7505	0.1080
2	C_{tc}	1.1070	0.1530
3	R_{S}	1.1070	0.6115
4	AR	1.1070	0.8745
5	MR	1.1070	1.1690
6	$\mathrm{~V}_{\mathrm{SS}}$	0.8225	1.2370
7	Q	0.512	1.2370
8	$\mathrm{Q} / \overline{\mathrm{Q}}$	0.1080	1.1635
9	SELECT	MODE	0.1080
10	A	0.1080	0.7955
11	B	0.1080	0.5495
12	$\mathrm{~V}_{\mathrm{DD}}$	0.3345	0.1080
$\mathbf{C O N N E C T}$ CHIP BACK TO V VDD			

Frequency Selection Table

A	B	Number of Counter stages "n"	Count 2^{n}
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

CMOS High Voltage Logic - CD4541B

Rev 1.0
Absolute Maximum Ratings ${ }^{1}$
11/06/20

| PARAMETER | SYMBOL | VALUE | UNIT |
| :--- | :---: | :---: | :---: | :---: |
| DC Supply Voltage (Referenced to V_{SS}) | V_{DD} | -0.5 to +20 | V |
| DC Input or Output Voltage (Referenced to V_{SS}) | $\mathrm{V}_{\text {IN }} \mathrm{V}_{\text {OUT }}$ | -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$ | V |
| Storage Temperature Range | $\mathrm{T}_{\mathrm{STG}}$ | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Input Current or Output Current (per Pad) | $\mathrm{I}_{\mathrm{IN}}, \mathrm{I}_{\mathrm{OUT}}$ | ± 10 | mA |
| Power Dissipation in Still Air ${ }^{2}$ | P_{D} | 750 | mW |

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic DIP package, results in die form are dependent on die attach and assembly method.
Recommended Operating Conditions ${ }^{3}$ (Voltages referenced to V_{SS})

| PARAMETER | SYMBOL | MIN | MAX | UNITS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | V_{DD} | 3.0 | 18 | V |
| DC Input Voltage, Output Voltage | $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}$ | 0 | $\mathrm{~V}_{\mathrm{DD}}$ | V |
| Operating Temperature Range | T_{J} | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |

3. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{V}_{\mathrm{OUT}}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\mathbb{I N}}\right.$ or $\left.\mathrm{V}_{\mathrm{OUT}}\right) \leq \mathrm{V}_{\mathrm{DD}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or $\left.\mathrm{V}_{\mathrm{DD}}\right)$. Unused outputs must be left open.
DC Electrical Characteristics (Voltages referenced to $\mathrm{V}_{s s}$)

PARAMETER	SYMBOL	$V_{\text {DD }}$	CONDITIONS	LIMITS			UNITS
				$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	FULL RANGE ${ }^{4}$	
Minimum High-Level Output Voltage	$\mathrm{V}_{\text {OH }}$	5 V	$\mathrm{V}_{\text {IN }}=0$ or V_{DD}	4.95	4.95	4.95	V
		10V	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{DD}	9.95	9.95	9.95	
		15V	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {DD }}$	14.95	14.95	14.95	
Maximum Low-Level Output Voltage	$\mathrm{V}_{\text {OL }}$	5 V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or 0	0.05	0.05	0.05	V
		10V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or 0	0.05	0.05	0.05	
		15V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or 0	0.05	0.05	0.05	
Minimum High-Level Input Voltage	$\mathrm{V}_{\text {IH }}$	5 V	$\mathrm{V}_{\mathrm{O}}=0.5$ or 4.5 V	3.5	3.5	3.5	V
		10V	$\mathrm{V}_{\mathrm{O}}=1.0$ or 9.0 V	7.0	7.0	7.0	
		15 V	$\mathrm{V}_{\mathrm{O}}=1.5$ or 13.5 V	11	11	11	
Maximum Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$	5 V	$\mathrm{V}_{\mathrm{O}}=4.5$ or 0.5 V	1.5	1.5	1.5	V
		10V	$\mathrm{V}_{\mathrm{O}}=9.0$ or 1.0 V	3.0	3.0	3.0	
		15V	$\mathrm{V}_{\mathrm{O}}=13.5$ or 1.5 V	4.0	4.0	4.0	
Minimum Output (Source) Current	$\mathrm{IOH}^{\text {O}}$	5 V	$\mathrm{V}_{\text {OH }}=2.5 \mathrm{~V}$	-6.2	-5	-3	mA
		5 V	$\mathrm{V}_{\text {OH }}=4.6 \mathrm{~V}$	-1.9	-1.55	-1.08	
		10V	$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	-5	-4	-2.8	
		15V	$\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{~V}$	-12.6	-10	-7.2	

4. $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

DC Electrical Characteristics (Voltages referenced to V_{ss})
11/06/20

PARAMETER	SYMBOL	V_{DD}	CONDITIONS	LIMITS			UNITS
				$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	FULL RANGE ${ }^{4}$	
Minimum Output (Sink) Current	loL	5 V	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.9	1.55	1.08	mA
		10V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	5	4	2.8	
		15 V	$\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}$	12.6	10	7.2	
Maximum Input Leakage Current	1 N	15V	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$	± 0.1	± 0.1	± 1.0	$\mu \mathrm{A}$
Maximum Quiescent Current ${ }^{5}$	$I_{\text {D }}$	5 V	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	5	5	150	$\mu \mathrm{A}$
		10V		10	10	300	
		15 V		20	20	600	
		20V		100	100	3000	

AC Electrical Characteristics ${ }^{6}$

PARAMETER	SYMBOL	$V_{\text {D }}$	CONDITIONS	LIMITS			UNITS
				$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	FULL RANGE ${ }^{4}$	
Maximum Clock Frequency (Figure 1)	$\mathrm{f}_{\text {max }}$	5 V	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{gathered}$	1.5	1.5	0.75	MHz
		10V		4	4	2	
		15 V		6	6	3	
Maximum Propagation Delay, Clock to Q, \bar{Q} (Figure 1)	$\begin{gathered} 2^{8}, \\ \mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }} \end{gathered}$	5 V	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{gathered}$	10.5	10.5	21	$\mu \mathrm{s}$
		10 V		3.8	3.8	7.6	
		15V		2.9	2.9	5.8	
	$\begin{gathered} 2^{16}, \\ \mathrm{t}_{\mathrm{PLH},}, \mathrm{t}_{\mathrm{PHL}} \end{gathered}$	5 V	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{gathered}$	18	18	36	$\mu \mathrm{s}$
		10V		10	10	20	
		15V		7.5	7.5	15	
Maximum Output Transition Time, Any Output (Fig 1.)	$\mathrm{t}_{\text {TLH }}$	5 V	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{gathered}$	360	360	720	ns
		10V		180	180	360	
		15 V		130	130	260	
Maximum Output Transition Time, Any Output (Fig. 1)	$\mathrm{t}_{\text {THL }}$	5 V	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}} & =200 \mathrm{k} \Omega \\ \mathrm{t}_{\mathrm{r}} & =\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{aligned}$	200	200	400	ns
		10V		100	100	200	
		15 V		80	80	160	
Maximum Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{gathered}$	7.5	7.5	7.5	pF

5. With AUTO RESET enable additional current drain at $25^{\circ} \mathrm{C}$ is:
$200 \mu \mathrm{~A}$ (Max) at 5 V ;
$350 \mu \mathrm{~A}$ (Max) at 10 V ;
$500 \mu \mathrm{~A}$ (Max) at 15 V .
6. Not production tested in die form, characterized by chip design and tested in package.

CMOS High Voltage Logic - CD4541B

Timing Requirements ${ }^{6}$

PARAMETER	SYMBOL	V_{DD}	CONDITIONS	LIMITS			UNITS
				$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	FULL RANGE ${ }^{4}$	
Minimum	t_{w}	5 V	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{gathered}$	900	1800	1800	ns
Pulse Width,		10 V		300	600	600	
Clock		15 V		225	450	450	
Maximum Rise and Fall Time, Clock (Figure 1)	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	5 V	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega \\ \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{gathered}$	Unlimited			
		10 V					$\mu \mathrm{s}$
		15 V					

Operating Characteristics

With Auto Reset pin set to a " 0 " the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master-Reset pin is set to a " 1 ". Both types of reset will result in synchronously resetting all counter stages independent of counter state. Auto-Reset pin when set to a " 1 " provides a low power operation. The RC oscillator will oscillate with a frequency determined by the external RC network i.e.,

$$
\begin{aligned}
& f=\frac{1}{2.3 R_{t c} C_{t c}} \text { if }(1 \mathrm{kHz} \leq f \leq 100 \mathrm{kHz}) \\
& \text { and } R_{S} \approx 2 R_{\mathrm{tc}} \text { where } R_{\mathrm{S}} \geq 10 \mathrm{k} \Omega
\end{aligned}
$$

The time select inputs (A and B) provide a two-bit address to output any one of four counter stages ($2^{8}, 2^{10}, 2^{13}$, and 2^{16}). The 2^{n} counts as shown in the Frequency Selection Table represent the Q output of the Nth stage of the counter. When A is " 1 ", 2^{16} is selected for both states of B. However, when B is " 0 ", normal counting is interrupted and the $9^{\text {th }}$ counter stage
receives its clock directly from the oscillator (i.e., effectively outputting 2^{8}).

The Q / \bar{Q} select output control pin provides for a choice of output level. When the counter is in a reset condition and Q / \bar{Q} select pin is set to a " 0 " the Q output is a " 0 ", correspondingly when Q / \bar{Q} select pin is set to a " 1 " the Q output is a " 1 ".

When the mode control pin is set to a " 1 ", the selected count is continually transmitted to the output. But, with mode pin " 0 " and after a reset condition the Rs flip-flop (see Expanded Logic Diagram) resets, counting commences, and after $2 n-1$ counts the Rs flip-flop sets which causes the output to change state. Hence, after another $2 n-1$ counts the output will not change. Thus, a Master Reset pulse must be applied or a change in the mode pin level is required to reset the single cycle operation.

Switching Waveform

Figure 1 - Propagation Delay, Output Timing

CMOS High Voltage Logic - CD4541B

Expanded Logic Diagram

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

