

CMOS Hex Inverting Buffer / Converter in bare die form

Rev 1.0 18/09/18

Description

The CD4049UB features logic level conversion using only one supply voltage, V_{DD} . The input signal high level (V $_{IH}$) can exceed the V_{DD} supply voltage when this device is used for logic level conversion. This device is intended for use as a CMOS to DTL/TTL converter and can drive directly two DTL / TTL loads (V_{DD} =5V, $V_{OL} \leq 0.4$ V, and $I_{OL} \geq 3.3$ mA). The device finds primary use where low power dissipation and/or high noise immunity is desired. This part should be considered a preferable replacement for CD4009UB or CD4010B in any inverter, current driver, or logic level conversion application due to its single power supply capability.

Ordering Information

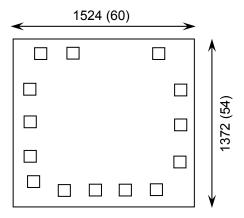
The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection+ MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

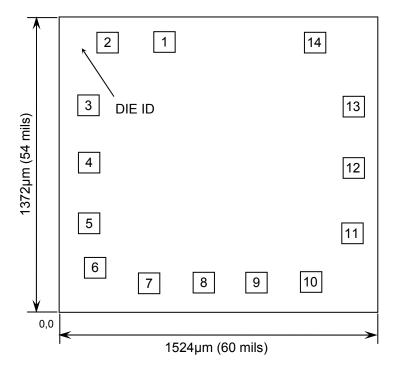
- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 635µm(25 Mils) On request
- Assembled into Ceramic Package On request

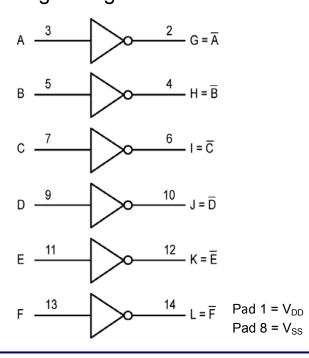
Features:

- Supply voltage range: 3V to 18V
- High Source and Sink Currents
- V_{IN} can exceed V_{DD}
- High-to-Low Level Logic Conversion
- High Sink Current for Driving x2 TTL Loads
- Maximum Input Current: 1 μA at 18 V over full temperature range
- ESD protection diodes on all inputs

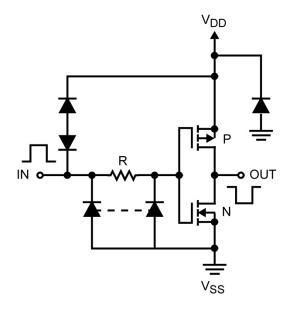
Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1524 x 1372 60 x 54	µm mils
Minimum Bond Pad Size	106 x 106 4.17 x 4.17	µm mils
Die Thickness	635 (±20) 25 (±0.79)	μm mils
Top Metal Composition	Al 1%Si 1.1µ	m
Back Metal Composition	N/A – Bare S	Si


Rev 1.0 18/09/18

Pad Layout and Functions



PAD	FUNCTION					
1	V_{DD}					
2	G = Ā					
3	Α					
4	H = B					
5	В					
6	$I = \overline{C}$					
7	С					
8	V_{SS}					
9	D					
10	$J = \overline{D}$					
11	Е					
12	K = Ē					
13	F					
14	L = F					
CONN	CONNECT CHIP BACK TO V_{DD} OR FLOAT					

Logic Diagram

Schematic (1/6 of circuit)

Rev 1.0 18/09/18

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage (Referenced to V _{SS})	V_{DD}	-0.5 to +20	V
DC Input Voltage (Referenced to V _{SS})	V _{IN}	-0.5 to +20	V
DC Output Voltage (Referenced to V _{SS})	V _{OUT}	-0.5 to V _{DD} +0.5	V
Storage Temperature Range	T _{STG}	-65 to 150	°C
Input Current (per Pad)	I _{IN}	±10	mA
Output Current (per Pad)	I _{out}	±45	mA
Power Dissipation in Still Air	P _D	825	mW

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic DIP package, results in die form are dependent on die attach and assembly method.

Recommended Operating Conditions³ (Voltages referenced to Vss)

PARAMETER	SYMBOL	MIN	MAX	UNITS
Supply Voltage	V_{DD}	3	18	V
DC Input Voltage, Output Voltage	$V_{IN,}V_{OUT}$	0	V_{DD}	V
Operating Temperature Range	TJ	-55	+125	°C

^{3.} This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $V_{SS} \le (V_{IN} \text{ or } V_{OUT}) \le V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

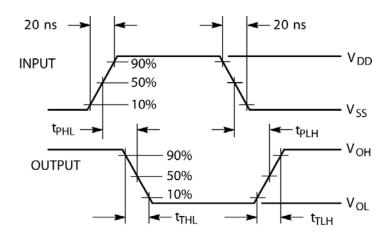
DC Electrical Characteristics (Voltages referenced to Vss)

PARAMETER	SYMBOL	V _{DD} CONDITIONS		UNITS				
			CONDITIONS	25°C	85°C	FULL RANGE⁴	Citii	
Minimum High-	V _{IH}	5V	$V_{OUT} = 0.5V$	4	4	4		
Level Input		10V	V _{OUT} = 1V	8	8	8	V	
Voltage		15V	V _{OUT} = 1.5V	12.5	12.5	12.5		
Maximum Low-		5V	V _{OUT} = 4.5V	1	1	1		
Level Input	V _{IL}	10V	V _{OUT} = 9V	2	2	2	V	
Voltage		15V	V _{OUT} = 13.5V	2.5	2.5	2.5		
Minimum High-	V _{OH}	5V	$V_{IN} = V_{SS}$ or V_{DD}	4.95	4.95	4.95	V	
Level Output		10V		9.95	9.95	9.95		
Voltage		15V		14.95	14.95	14.95		
Maximum Low-	V _{OL}	5V		0.05	0.05	0.05		
Level Output Voltage		10V	$V_{IN} = V_{DD}$ or V_{SS}	0.05	0.05	0.05		
		15V		0.05	0.05	0.05		
Maximum Input Leakage Current	I _{IN}	15V	V_{IN} = V_{DD} or V_{SS}	±0.1	±.0.1	±1.0	μΑ	

^{4.} −55°C ≤ T_J ≤ +125°C

Rev 1.0 18/09/18

DC Electrical Characteristics (Voltages referenced to Vss)


PARAMETER	SYMBOL	V _{DD}	CONDITIONS	LIMITS			UNITS
			CONDITIONS	25°C	85°C	FULL RANGE⁴	ONTO
Maximum Quiescent Supply Current		5V	M M M	1	1	30	
	10V	$V_{IN} = V_{DD}$ or V_{SS} $I_{OUT} = 0\mu A$	2	2	60	μA	
		15V	1001 Ομ/τ	4	4	120	

AC Electrical Characteristics⁵

PARAMETER	SYMBOL	V _{DD}	V _{IN}	CONDITIONS	TYPICAL	LIMITS	UNITS
Propagation Delay,	t _{PLH,}	5V	5V	$C_L = 50pF,$ $R_L = 200k\Omega$	60	120	ns
		10V	10V		32	65	
Low to High		15V	15V	$t_r = t_f = 20$ ns	25	50	
Output		5V	5V	C _L = 50pF,	32	65	ns
Propagation	t _{PHL}	10V	10V	$R_L = 200k\Omega$	20	40	
Delay, High to Low		15V	15V	$t_r = t_f = 20$ ns	15	30	
Transition		5V	5V	$C_L = 50pF,$ $R_L = 200k\Omega$	80	160	ns
Time,	t _{TLH,}	10V	10V		40	80	
Low to High		15V	$t_r = t_f = 20$ ns	30	60		
Transition		5V	5V	$C_L = 50pF,$ $R_L = 200k\Omega$	30	60	
Time, High to	t _{THL,}	10V	10V		20	40	ns
Low		15V	15V	$t_r = t_f = 20$ ns	15	30	
Input Capacitance	C _{IN}	-		C_L = 50pF, R_L = 200k Ω t_r = t_f = 20ns	15	22.5	pF

^{5.} Not production tested in die form, characterized by chip design and tested in package.

Switching Waveform

Rev 1.0 18/09/18

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

