

Rev 1.0 08/01/19

General purpose medium power amplifier or switch in bare die form Complement to PNP BC556

Features:

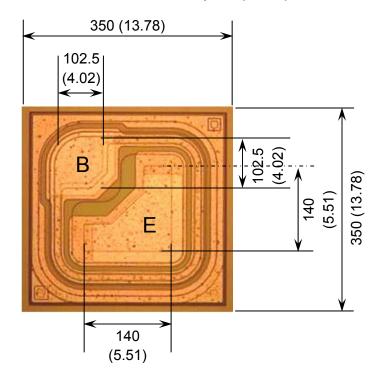
- Gain graded
- Low saturation voltage
- Well suited for amplifier applications
- High reliability gold back metal
- High reliability tested grades for Military + Space

Ordering Information:

The following part suffixes apply:

- No suffix MIL-STD-750 /2072 Visual Inspection
- "H" MIL-STD-750 /2072 Visual Inspection+ MIL-STD-38534 Class H LAT
- "K" MIL-STD-750 /2072 Visual Inspection+ MIL-STD-38534 Class K LAT

LAT = Lot Acceptance Test.


For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification

Supply Formats:

- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape Specific request
- Unsawn Wafer Specific request
- With additional electrical selection Specific request
- Sawn as pairs or adjacent pair pick Specific request

Die Dimensions in µm (mils)

E = EMITTER **B** = BASE

DIE BACK = COLLECTOR

Mechanical Specification

Die Size (Excluding Saw Street)	350 x 350 13.78 x 13.78	µm mils	
Base Pad Size	102.5 x 102.5 4.02 x 4.02	μm	
Emitter Pad Size	96 x 96 5.51 x 5.51	mils	
Die Thickness	230 (±15) 9.06 (±0.59)	μm mils	
Top Metal Composition	Al - 1.3μm		
Back Metal Composition	AuAs - 0.9μm		

Rev 1.0 08/01/19

Absolute Maximum Ratings T_A = 25°C unless otherwise stated

PARAMETER	SYMBOL	VALUE	UNIT
Collector-Base Voltage	V _{CBO}	80	V
Collector-Emitter Voltage	V _{CEO}	65	V
Emitter-Base Voltage	V _{EBO}	6	V
Collector Current	Ic	100	mA
Junction Temperature	TJ	150	°C
Storage Temperature	T _{stg}	-55 to 150	°C

Electrical Characteristics T_A = 25°C unless otherwise stated

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_{\rm C} = 50 \mu A, I_{\rm E} = 0$		50	-	-	V
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	I _C = 1mA, I _B = 0		45	-	-	V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	$I_E = 50 \mu A, I_C = 0$		6	-	-	V
Collector Cut-off Current	I _{CBO}	V _{CB} = 30V, I _E = 0		-	-	15	nA
ON CHARACTERISTICS							
Forward-Current Transfer Ratio ¹	h _{FE}	BC546	V _{CE} = 5V, I _C = 2mA	110	-	800	-
		BC546A		110	-	220	-
		BC546B		200	290	450	-
		BC546C		420	-	800	-
		BC546A	$V_{CE} = 5V, I_{C} = 10\mu A$	-	90	-	-
			$V_{CE} = 5V, I_{C} = 100mA$	-	120	-	-
		BC546B	$V_{CE} = 5V, I_{C} = 10\mu A$	-	150	-	-
			$V_{CE} = 5V, I_{C} = 100mA$	-	180	-	-
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 10 \text{mA}, I_B = 0.5 \text{mA}$		-	90	250	mV
		$I_C = 100$ mA, $I_B = 5$ mA		-	200	600	mV
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C = 10mA, I _B = 0.5mA		-	700	-	mV
		I _C = 100mA, I _B = 5mA		-	900	-	mV
Base-Emitter On Voltage	V _{BE(on)}	$I_C = 2mA$, $V_{CE} = 5V$		580	660	700	mV
		$I_C = 10$ mA, $V_{CE} = 5$ V		-	-	720	mV
SMALL SIGNAL CHARACTERISTICS							
Transition Frequency ³	f _T	V _{CE} = 5V, I _C = 10mA, f = 100MHz		150	300	-	MHz
Small-Signal Current Gain	h _{fe}	BC546)/ 5)/ I O A	125	-	900	
		V_{CE} = 5V, I_{C} = 2mA, f = 1 kHz		125	220	260	
		BC546B		240	330	500	
Output Capacitance	C _{obo}	V _{CB} = 10V, I _E = 0, f = 1MHz		-	3.5	6	pF
Input Capacitance	C _{ibo}	V _{BE} = 10V, I _C = 0, f = 1MHz		-	9	-	pF
Noise Figure	NF	V_{CE} = 5V, I_C = 200μA, f = 1KHz, R_G =2K Ω		-	2	10	dB

Note 1: Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%

Note 2: Not production testing in die form. Characterized by chip design and tested in package

Note 3: f_T is defined as the frequency at which $\mid h_{fe} \mid$ extrapolates to unity.

Typical Characteristics T_A = 25°C unless otherwise stated

Rev 1.0 08/01/19

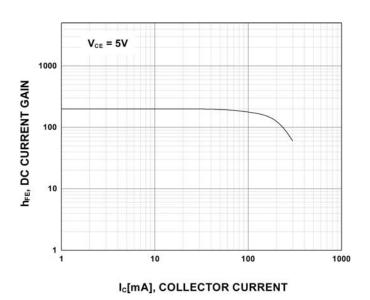


Figure 1 - DC Current Gain

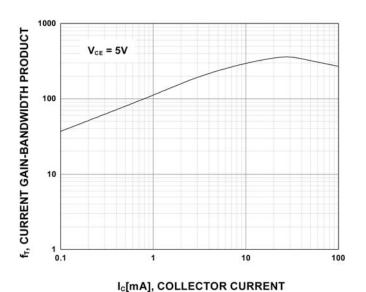
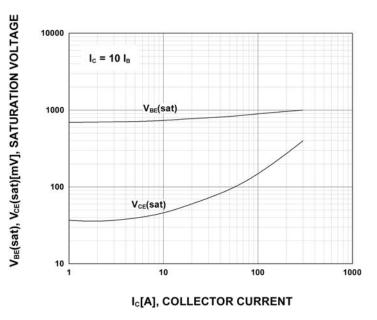
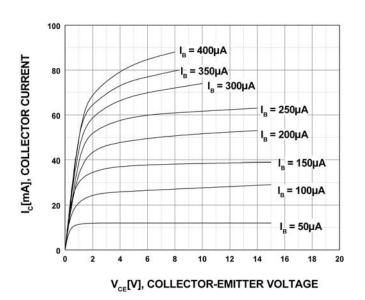




Figure 3 – Current Gain Bandwidth Product

Figure 3 – Base-Emitter Saturation Voltage versus Collector-Emitter Saturation Voltage

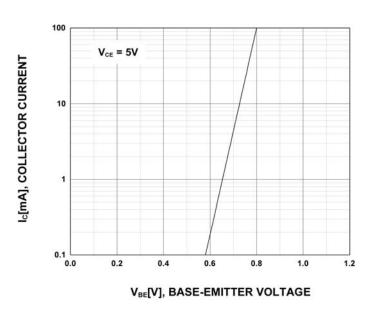


Figure 4 – Static Characteristics

Typical Characteristics T_A = 25°C unless otherwise stated

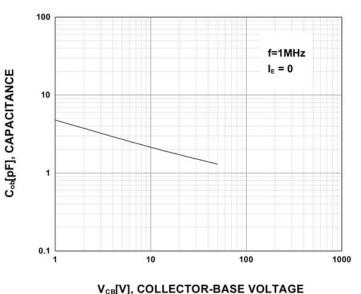


Figure 5 – Transfer Characteristic

Figure 6 – Output Capacitance

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

