

Quad D-Type Flip-Flop Logic IC with Reset in bare die form

Rev 1.0 21/11/17

Description

The 74HC175 is fabricated using a 2.5µm 5V CMOS process and consists of four D-Type flip–flops each with separate D input and common Reset and Clock inputs. The logic level present at the "D" input is transferred to the Q output during the positive-going transition of the clock pulse. Reset is clock independent and is accomplished by a low level on the Reset line. The device is useful for applications where both the true and complement outputs are required and the clock and master reset are common to all storage elements.

Ordering Information

The following part suffixes apply:

No suffix - MIL-STD-883 /2010B Visual Inspection

For High Reliability versions of this product please see 54HC175

Supply Formats:

- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Ceramic Package On request

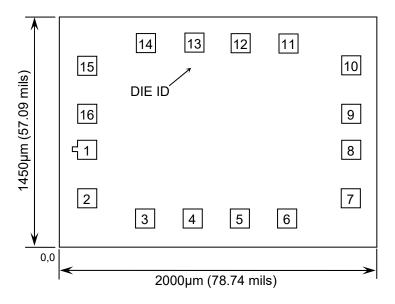
Features:

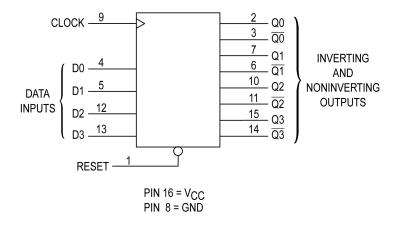
- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Low Input Current: 1µA
- High Noise Immunity Characteristics of CMOS
- Operating Voltage Range: 2.0 to 6.0 V
- Direct drop-in replacement for obsolete components in long term programs.

Die Dimensions in µm (mils)

~	2000	0 (79)		
				1450 (57)

Mechanical Specification


Die Size (Unsawn)	2000 x 1450 79 x 57	µm mils	
Minimum Bond Pad Size	120 x 120 4.72 x 4.72	µm mils	
Die Thickness	350 (±20) 13.78 (±0.79)	μm mils	
Top Metal Composition	Al 1%Si 1.1μ	m	
Back Metal Composition	etal Composition N/A – Bare Si		



Rev 1.0 21/11/17

Pad Layout and Functions

Logic Diagram

PAD	FUNCTION	COORDINA	ATES (mm)
FAD	FUNCTION	X	Y
1	RESET	0.122	0.554
2	Q0	0.122	0.251
3	Q0	0.480	0.122
4	D0	0.780	0.122
5	D1	1.070	0.122
6	Q1	1.370	0.122
7	Q1	1.771	0.251
8	GND	1.771	0.554
9	CLOCK	1.771	0.781
10	Q2	1.771	1.084
11	Q2	1.373	1.222
12	D2	1.073	1.222
13	D3	0.783	1.222
14	Q3	0.483	1.222
15	Q3	0.122	1.084
16	V _{CC}	0.122	0.781
CON	NECT CHIP BA	CK TO V _{CC} C	R FLOAT

Truth Table

I	NPUTS		OUTP	UTS
RESET	CLOCK	D	Q	Q
L	Х	Χ	L	Н
Н		Н	Н	L
Н		L	L	Н
Н	L	X	No Cl	nange

Absolute Maximum Ratings¹

Rev 1.0 21/11/17

PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage (Referenced to GND)	V _{CC}	-0.5 to +7.0	V
DC Input Voltage (Referenced to GND)	V _{IN}	-1.5 to V _{CC} +1.5	V
DC Output Voltage (Referenced to GND)	V _{OUT}	-0.5 to V _{CC} +0.5	V
Storage Temperature Range	T _{STG}	-65 to 150	°C
Input Current (per Pad)	I _{IN}	±20	mA
Output Current (per Pad)	I _{OUT}	±25	mA
DC Supply Current, V _{CC} or GND, per pad	I _{cc}	±50	mA
Power Dissipation in Still Air ²	P _D	750	mW

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic DIP package, results in die form are dependent on die attach and assembly method.

Recommended Operating Conditions³ (Voltages referenced to GND)

		0			•
PARAMETE	SYMBOL	MIN	MAX	UNITS	
Supply Voltage	V _{CC}	2.0	6.0	V	
DC Input Voltage, Outp	V_{IN}, V_{OUT}	0	V _{CC}	V	
Operating Temperature	T _J	-40	+85	°C	
	V _{CC} =2.0V		0	1000	
Input Rise / Fall Time	V _{CC} =4.5V	t _r , t _f	0	500	ns
	V _{CC} =6.0V		0	400	

^{3.} This device contains protection circuitry against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of voltage higher than max rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC} . Unused inputs must be tied to an appropriate logic voltage level (e.g., GND or V_{CC}). Unused outputs must be left open.

DC Electrical Characteristics (Voltages referenced to GND)

PARAMETER	SYMBOL	SYMBOL V _{CC} COND			LIMIT	UNITS	
TANAMETER	OTHIBOL	• 66	CONDITIONS	25°C	85°C	FULL RANGE⁴	Oitilo
Minima una Iliada I aval		2.0	V _{OUT} = 0.1V	1.5	1.5	1.5	
Minimum High-Level Input Voltage	V _{IH}	4.5	or V _{CC} -0.1V	3.15	3.15	3.15	V
input voltage		6.0	I _{OUT} ≤ 20μA	4.2	4.2	4.2	
Maximum Lour Loval		2.0	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$ $\left I_{OUT} \right \le 20\mu A$	0.3	0.3	0.3	V
Maximum Low-Level Input Voltage	V _{IL}	4.5		0.9	0.9	0.9	
par remage		6.0		1.2	1.2	1.2	
		2.0	\/ =\/ a=\/	1.9	1.9	1.9	
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 20 \mu A$	4.4	4.4	4.4	V
Minimum High-Level		6.0	1.0011 - 20 pr	5.9	5.9	5.9	
Output Voltage	V _{OH}	4.5	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 4.0 \text{mA}$	3.98	3.84	3.84	V
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 5.2 \text{mA}$	5.48	5.34	5.34	V

Rev 1.0 21/11/17

DC Electrical Characteristics Continued (Voltages referenced to GND)

PARAMETER	SYMBOL	Vaa	V _{cc} CONDITIONS		LIMIT	S	LINITS
171101112121		▼ CC	CONDITIONS	25°C	85°C	FULL RANGE⁴	ONLIG
		2.0	\/ =\/ or\/	0.1	0.1	0.1	V V µA
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	0.1	0.1	0.1	
Maximum Low-Level	.,	6.0	1.0011 = 29 km :	0.1	0.1	0.1	
Output Voltage	V _{OL}	4.5	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 4.0 \text{mA}$	0.26	0.33	0.33	V
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 5.2 \text{mA}$	0.26	0.33	0.33	V
Maximum Input Leakage Current	I _{IN}	6.0	V _{IN} = GND or V _{CC}	±0.1	±1.0	±1.0	μА
Maximum Quiescent Supply Current	I _{CC}	6.0	V_{IN} = GND or V_{DD} I_{OUT} = 0μ A	8	80	80	μА

⁴. -40° C $\leq T_{J} \leq +85^{\circ}$ C

AC Electrical Characteristics⁵

PARAMETER	SYMBOL	V _{cc}	CONDITIONS		LIMITS		
TAKAMETEK	01111202	Vec	25°C	85°C	FULL RANGE⁴	UNITS	
Maximum Clock Frequency		2.0	0 - 50-5	6.0	4.8	4.8	
	f _{max}	4.5	$C_L = 50pF,$ $t_r = t_f = 6ns$	30	24	24	MHz
(Figure 1, 4)		6.0	प प जाठ	35	28	28	
Propagation Delay,		2.0	C = 50pE	150	190	190	
Clock to Q or Q	t _{PLH} , t _{PHL}	4.5	$C_L = 50 pF,$ $t_r = t_f = 6 ns$	30	38	38	ns
(Figure 1, 4)		6.0	, , -	26	33	33	
Propagation Delay,		2.0	C _L = 50pF,	125	155	155	ns
Reset to Q or Q	t _{PLH} , t _{PHL}	4.5	$t_r = t_f = 6$ ns	25	31	31	
(Figure 2, 4)		6.0	, , -	21	26	24 28 190 38 33 155 31 26 95 19 16	
Output Transition		2.0	C = 50pE	75	95	95	
Time, Any Output	t _{TLH} , t _{THL}	4.5	$C_L = 50pF,$ $t_r = t_f = 6ns$	15	19	19	ns
(Figure 1, 4)		6.0	, , -	13	16	16	
Input Capacitance	C _{IN}	-	$C_L = 50pF,$ $t_r = t_f = 6ns$	10	10	10	pF
Power Dissipation Capacitance	C _{PD} -	_	T _J = 25°C,	TYPICAL			pF
(Per Flip-Flop)	OPD		$V_{CC} = 5.0V$		35		ρ,

^{5.} Not production tested in die form, characterized by chip design and tested in package.

Rev 1.0 21/11/17

Timing Requirements⁵

PARAMETER	SYMBOL	V _{cc}	CONDITIONS		LIMIT	S	UNITS
	STWIDOL	100	CONDITIONS	25°C	85°C	FULL RANGE⁴	ONTO
Minimum Setup		2.0	C - 50°5	100	125	125	
Time, Data to Clock	t _{su}	4.5	$C_L = 50pF,$ $t_r = t_f = 6ns$	20	25	25	ns
(Figure 3)		6.0	4 4 5.15	17	21	21	
Minimum Hold Time,		2.0	C _L = 50pF,	3.0	3.0	3.0	
Clock to Data	t _h	4.5	$t_r = t_f = 6$ ns	3.0	3.0	3.0	ns
(Figure 3)		6.0	4 4 5115	3.0	3.0	3.0	
Minimum Recovery		2.0	$C_L = 50 pF,$ $t_r = t_f = 6 ns$	100	125	125	ns
Time, Reset Inactive	t _{rec}	4.5		20	25	25	
to Clock (Figure 2)		6.0		17	21	21	
Minimum Pulse	t _w	2.0	$C_L = 50pF,$ $t_r = t_f = 6ns$	80	100	100	ns
Width, Clock		4.5		16	20	20	
(Figure 1)		6.0	4 4 5.15	14	17	17	
Minimum Pulse		2.0	C _L = 50pF,	80	100	100	ns
Width, Reset	t _w	4.5	$t_r = t_f = 6$ ns	16	20	20	
(Figure 2)		6.0	4 4 5.15	14	17	17	
Maximum Input Rise		2.0	C = 50pF	1000	1000	1000	
and Fall Times	t _r , t _f	4.5	$C_L = 50pF,$ $t_r = t_f = 6ns$	500	500	500	ns
(Figure 1)		6.0	, , one	400	400	400	

⁵. Not production tested in die form, characterized by chip design and tested in package.

Switching Waveforms

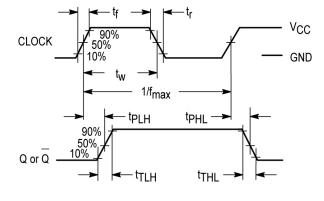


Figure 1 – Data, Clock and Output

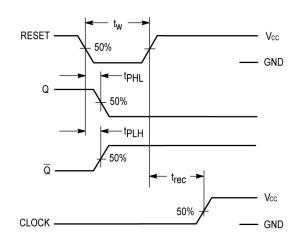


Figure 2 – Reset, Clock and Output

Rev 1.0 21/11/17

Switching Waveforms continued

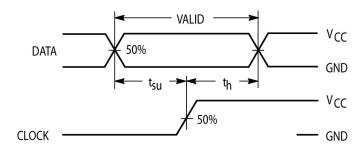
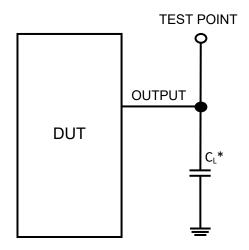



Figure 3 - Clock to Data

* Includes all probe and jig capacitance

Figure 4 – Test Circuit

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

