

High Speed CMOS Logic – 74HC154

Dual 1-of-16 Decoder / Demultiplexer in bare die form

Description

The 74HC154 is fabricated using a 2.5µm 5V CMOS process and has the same high speed performance of LSTTL combined with CMOS low power consumption. The device consists of x4 active-high binary address inputs, x16 active-low outputs & x2 active-low chip-selects. The x2 active-low chip-selects can be used to strobe & eliminate normal decoding 'glitches' on the outputs, or can be used to expand the decoder. Both chip-selects must be low to enable the outputs. The demultiplexing function is executed by use of one chip-select input as multiplexed data input. When the other chip-select input is low, the addressed output will follow the state of the applied data.

Ordering Information

The following part suffixes apply:

No suffix - MIL-STD-883 /2010B Visual Inspection

For High Reliability versions of this product please see

<u>54HC154</u>

Supply Formats:

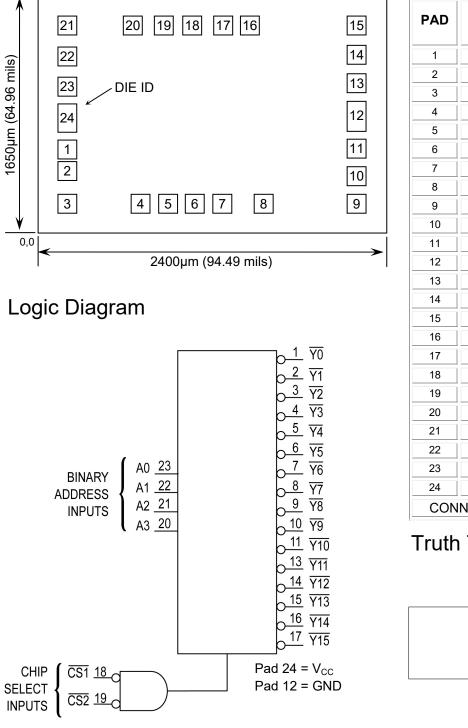
- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Ceramic Package On request

Features:

- Output Drive Capability: 10 LSTTL Loads
- Low Input Current: 1µA
- Outputs directly interface CMOS, NMOS and TTL
- Operating Voltage Range: 2V to 6V
- CMOS High Noise Immunity
- Function compatible with 74LS154.

Die Dimensions in µm (mils)

←	2400 (95)	>


Mechanical Specification

Die Size (Unsawn)	2400 x 1650 95 x 65	µm mils			
Minimum Bond Pad Size	120 x 120	μm			
	4.72 x 4.72 350 (±20)	mils µm			
Die Thickness	13.78 (±0.79)	mils			
Top Metal Composition	Al 1%Si 1.1µm				
Back Metal Composition	N/A – Bare Si				

Pad Layout and Functions

PAD	FUNCTION	COORDINATES (mm)						
	I ONOTION	X	Y					
1	<u>Y0</u>	0.140	0.522					
2	<u>Y1</u>	0.140	0.377					
3	<u>Y2</u>	0.140	0.142					
4	<u>¥3</u>	0.645	0.132					
5	<u>¥4</u>	0.833	0.132					
6	<u>Y5</u>	1.021	0.132					
7	Y6	1.210	0.132					
8	<u>77</u>	1.490	0.132					
9	<u>¥8</u>	2.138						
10	<u>79</u>	2.138	0.342 0.537 0.724 0.992 1.187					
11	Y10	2.138						
12	GND	2.138						
13	Y11	2.138						
14	Y12	2.138						
15	Y13	2.138	1.387					
16	<u>Y14</u>	1.397	1.490					
17	Y15	1.210	1.397					
18	CS1	1.005	1.397					
19	CS2	0.795	1.397					
20	A3	0.590	1.397					
21	A2	0.140	1.387					
22	A1	0.140	1.179					
23	A0	0.140	0.971					
24	V _{cc}	0.140	0.707					
CON	NECT CHIP BA	CK TO V _{CC} C	R FLOAT					

Truth Table

SEE PAGE 5

Rev 1.0 30/05/22

Rev 1.0 30/05/22

Absolute Maximum Ratings¹

3			
PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage (Referenced to GND)	V _{CC}	-0.5 to +7.0	V
DC Input Voltage (Referenced to GND)	V _{IN}	-1.5 to V _{CC} +1.5	V
DC Output Voltage (Referenced to GND)	V _{OUT}	-0.5 to V _{CC} +0.5	V
DC Input Current, per pin	I _{IN}	±20	mA
DC Output Current, per pin	I _{OUT}	±25	mA
DC V _{CC} or GND Current, per pin	I _{cc}	±50	mA
Power Dissipation in Still Air ²	PD	750	mW
Storage Temperature Range	T _{STG}	-65 to 150	°C

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic DIP package, results in die form are dependent on die attach and assembly method.

Recommended Operating Conditions³ (Voltages referenced to GND)

PARAMETER		SYMBOL	MIN	MAX	UNITS
DC Supply Voltage		V _{CC}	2	6	V
DC Input or Output Voltage	V _{IN} ,V _{OUT}	0	V _{CC}	V	
Operating Temperature Rar	nge	TJ	-40	+85	°C
	V _{CC} = 2.0V		0	1000	
Input Rise and Fall Time	$V_{CC} = 4.5V$	t _r , t _f	0	500	ns
	$V_{\rm CC} = 6.0 V$		0	400	

3. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC Electrical Characteristics (Voltages Referenced to GND)

PARAMETER	SYMBOL	V _{cc}	CONDITIONS		LIMIT	S	UNITS
	OTHEOL	•	CONDITIONO	25°C	85°C	FULL RANGE ⁴	
		2.0V	V _{OUT} = 0.1V or	1.5	1.5	1.5	
Minimum High-Level Input Voltage	V _{IH}	4.5V	V _{CC} -0.1V	3.15	3.15	3.15	V
input voltago		6.0V	I _{OUT} ≤ 20μA	4.2	4.2	4.2	
		2.0V	$V_{OUT} = 0.1 V \text{ or}$	0.3	0.3	0.3	
Maximum Low-Level Input Voltage	V _{IL}	4.5V	V _{cc} -0.1V	0.9	0.9	0.9	V
		6.0V	Ι _{Ουτ} ≤ 20μΑ	1.2	1.2	1.2	

4. -40°C ≤ T_J ≤ +85°C

High Speed CMOS Logic – 74HC154

Rev 1.0 30/05/22

DC Electrical Characteristics (Voltages Referenced to GND)									
PARAMETER	SYMBOL	V _{cc}	CONDITIONS		UNITS				
FARAMETER	STWIDOL	V CC	CONDITIONS	25°C	85°C	FULL RANGE ⁴	UNITS		
		2.0V		1.9	1.9	1.9			
Minimum High-Level Output Voltage Maximum Low-Level Output Voltage		4.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20\mu A$	4.4	4.4	4.4			
	.,	6.0V		5.9	5.9	5.9			
	V _{он}	4.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{mA}$	3.98	3.84	3.84	V		
		6.0V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 5.2 \text{mA}$	5.48	5.34	5.34			
		2.0V	$\lambda = \lambda = \lambda $	0.1	0.1	0.1			
		4.5V	V _{IN} = V _{IH} or V _{IL} I _{OUT} ≤ 20µA	0.1	0.1	0.1			
Maximum Low-Level	.,	6.0V		0.1	0.1	0.1			
	V _{OL}	4.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{mA}$	0.26	0.33	0.33	V		
		6.0V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 5.2 \text{mA}$	0.26	0.33	0.33			
Maximum Input Leakage Current	I _{IN}	6.0V	$V_{IN} = V_{CC}$ or GND	±0.1	±1.0	±1.0	μA		
Maximum Quiescent Supply Current	I _{CC}	6.0V	$V_{IN} = V_{CC} \text{ or GND}$ $I_{OUT} = 0\mu A$	8	80	80	μΑ		

AC Electrical Characteristics⁵

PARAMETER	SYMBOL	V _{cc}	CONDITIONS		LIM	ITS	UNITS		
	01			25°C	85°C	FULL RANGE ⁴			
Maximum		2.0V	0 50 5	190	240	240			
Propagation Delay, Select to Output Y	t _{PLH,} t _{PHL}	4.5V	C _L = 50pF, t _r = t _f = 6ns	38	48	48	ns		
(Figure 1, 3)		6.0V	4 4 0110	32	41	41			
Maximum		2.0V		175	220	220			
Propagation Delay, Input A to Output Y	t _{PLH,} t _{PHL}	4.5V	C _L = 50pF, t _r = t _f = 6ns	35	44	44	ns		
(Figure 2,3)		6.0V		30	37	37			
Maximum Output		2.0V	0 50 F	75	95	95			
Transition Time, Any Output	t _{TLH,} t _{THL}	4.5V	C _L = 50pF, t _r = t _f = 6ns	15	19	19	ns		
(Figure 1,3)		6.0V	4 4 0110	13	16	16			
Maximum Input Capacitance	C _{IN}	-	-	10	10	10	pF		
Power Dissipation	C _{PD}	_	T _J = 25°C,						
Capacitance ⁷	⊂pD		$V_{CC} = 5.0V$		pF				

6. Not production tested in die form, characterized by chip design and tested in package.

7. Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

Pad Description

Rev 1.0 30/05/22

ADDRESS INPUTS A0, A1, A2, A3 (Pads 23, 22, 21, 20) These inputs, when the 1-of-16 decoder is enabled, determine which of its sixteen active-low outputs is selected.

CONTROL INPUTS

(Pads 18, 19)

Active-low chip-select inputs. With a low level on both inputs, the outputs of the decoder follow the Address inputs. A high level on either input forces all outputs to a high level.

OUTPUTS

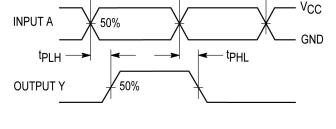
Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14, Y15 (Pads 1-11, Pads 13-17)

Active-low outputs. These outputs assume a low level when addressed and both chip-select inputs are active. These outputs remain high when not addressed or when a chip-select input is high.

Truth Table

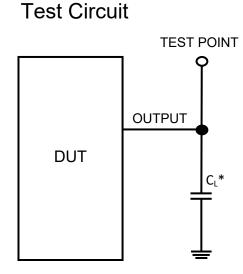
		INPL	JTS				OUTPUTS														
CS1	CS2	A3	A2	A1	A0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
L	L	L	L	L	L	L	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	н	н	L	н	н	Н	н	Н	Н	н	Н	н	Н	н	н	н	Н
L	L	L	L	Н	L	н	Н	L	н	Н	н	Н	н	н	Н	н	н	н	н	н	Н
L	L	L	L	Н	н	н	Н	н	L	Н	н	Н	н	н	Н	н	н	Н	Н	Н	Н
L	L	L	н	L	L	н	н	н	н	L	н	н	н	н	н	н	н	н	н	н	Н
L	L	L	Н	L	н	н	Н	н	н	н	L	Н	Н	н	Н	н	н	Н	н	н	Н
L	L	L	Н	Н	L	н	Н	н	н	н	н	L	н	н	Н	н	н	н	н	н	Н
L	L	L	н	н	н	н	н	н	н	н	н	н	L	н	н	н	н	н	н	н	Н
L	L	н	L	L	L	н	н	н	Н	Н	Н	Н	Н	L	н	Н	Н	Н	Н	Н	Н
L	L	н	L	L	Н	Н	Н	н	н	Н	Н	Н	Н	Н	L	н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	н	Н	Н	Н	Н	Н	Н	Н	н	Н	L	н	Н	Н	Н	Н
L	L	Н	L	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	н	Н	н	L	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	н	Н	L	Н	Н	Н
L	L	Н	н	Ŀ	н	H	н	н	Н	н	Н	Н	н	Н	н	Н	Н	н	L	Н	Н
L	L	Н	н	н	L	H	н	н	Н	н	Н	Н	Н	Н	Н	н	н	Н	н	L	н
L	L	Н	Н	Н	Н	Н	Н	Н	H	Н	H	Н	н	Н	Н	Н	Н	Н	Н	Н	L
L	Н	Х	Х	Х	Х	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	Х	Х	Х	Х	н	Н	н	н	н	н	Н	н	н	Н	н	н	н	н	н	Н
Н	н	Х	Х	Х	Х	н	Н	н	н	Н	н	Н	н	н	н	н	н	н	н	н	Н

H = High Level, L = Low Level, X = Don't Care


High Speed CMOS Logic – 74HC154

Switching Waveforms

Rev 1.0 30/05/22



VALID

VALID

* Includes all probe and jig capacitance

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

