

Advanced CMOS TTL Input – 74ACT38

Quad 2-input NAND buffer (open drain) in bare die form

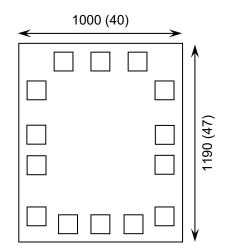
Description

74ACT38 provides x4 independent 2-input NAND gates performing the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$. The device is fabricated using an advanced 1.5µm 5V CMOS process combining high speed LSTTL performance with CMOS low power consumption. The provision of opendrain outputs enables implementation of active-low wired-OR or active-high wired-AND functionality. Device inputs directly accept both standard CMOS and LSTTL outputs. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Features:

- Inputs directly accept TTL
- Outputs directly interface CMOS, NMOS and TTL
- Open-drain output for wired-OR/wired-AND function
- Outputs Source/Sink 24 mA
- Low Input Current: 1µA
- Functionally compatible with bipolar 74LS38, 74F38
- Lower power alternative to bipolar logic.

Ordering Information


The following part suffixes apply:

No suffix - MIL-STD-883 /2010B Visual Inspection

For High Reliability versions of this product please see

54ACT38

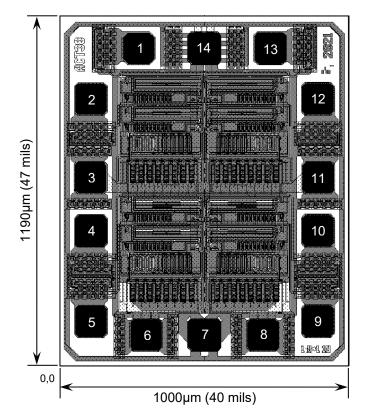
Die Dimensions in µm (mils)

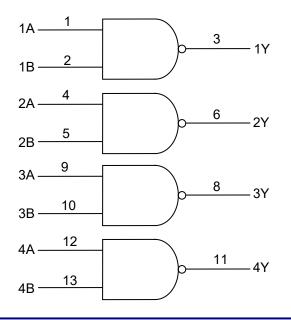
Supply Formats:

- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Ceramic Package On request

Mechanical Specification

Die Size (Unsawn)	1000 x 1190 40 x 47	µm mils	
Minimum Bond Pad Size	100 x 100 4 x 4	µm mils	
Die Thickness	350 (±20) 13.78 (±0.79)	µm mils	
Top Metal Composition	Al 1%Si 1.1µm		
Back Metal Composition	N/A – Bare Si		




Advanced CMOS TTL Input – 74ACT38

Rev 1.0 18/01/21

Pad Layout and Functions

Logic Diagram

PAD	FUNCTION	COORDINATES (mm)				
	TONOTION	X	Y			
1	1A	0.250	0.980			
2	1B	0.100	0.820			
3	1Y	0.100	0.580			
4	2A	0.100	0.420			
5	2B	0.100	0.140			
6	2Y	0.270	0.100			
7	GND	0.450	0.100			
8	3Y	0.670	0.100			
9	3A	0.790	0.140			
10	3B	0.790	0.420			
11	4Y	0.790	0.590			
12	4A	0.790	0.820			
13	4B	0.650	0.980			
14	V _{CC}	0.450	0.980			
CON	CONNECT CHIP BACK TO V _{CC} OR FLOAT					

Truth Table

INPL	JTS	OUTPUT				
Α	В	Y				
L	L	Z				
L	Н	Z				
Н	L	Z				
Н	Н	L				
H = H	H = High level (steady state)					
L = Low level (steady state)						
Z = High Impedance state						

Rev 1.0 18/01/21

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage (Referenced to GND)	V _{CC}	-0.5 to +7.0	V
DC Input or Output Voltage (Referenced to GND)	V _{IN} , V _{OUT}	-0.5 to V _{CC} +0.5	V
Storage Temperature Range	T _{STG}	-65 to 150	°C
Input Current (per Pad)	I _{IN}	±20	mA
Output Current (per Pad)	I _{OUT}	±50	mA
DC Supply Current, V _{CC} or GND, per pad	I _{CC}	±50	mA
Power Dissipation in Still Air ²	P _D	500	mW

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic SSOP package, results in die form are dependent on die attach and assembly method.

Recommended Operating Conditions³ (Voltages Referenced to GND)

1 0		(3		,
PARAMETER	SYMBOL	MIN	MAX	UNITS
DC Supply Voltage	V _{CC}	4.5	5.5	V
DC Input or Output Voltage	V _{IN} ,V _{OUT}	0	V _{cc}	V
Operating Temperature Range	TJ	-55	+125	°C
Output current - High	I _{OH}	-	-24	mA
Output current - Low	I _{OL}	-	24	mA
Input Rise or Fall rate V _{CC} = 4.5V	Δt/ΔV	0	10	ns/V
(V _{IN} from 0.8V to 2V) $V_{CC} = 5.5V$		0	8	115/ V

3. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC Electrical Characteristics (Voltages referenced to GND)

PARAMETER	SYMBOL	V _{cc} CONDITIONS	CONDITIONS	LIMITS			UNITS
			CONDITIONO	25°C	85°C	FULL RANGE ⁴	
Minimum High-Level	VIH	4.5V	V _{OUT} = 0.1V	2	2	2	V
Input Voltage	VIH	5.5V	or V_{CC} -0.1V	2	2	2	
Maximum Low-Level Input Voltage	V.	4.5V	$V_{OUT} = 0.1V$ or V_{CC} -0.1V	0.8	0.8	0.8	V
	VIL 5	5.5V		0.8	0.8	0.8	
Minimum Low-Level Output Voltage	V _{oL}	4.5V	Ι _{ουτ} = 50μΑ	0.1	0.1	0.1	V
		5.5V		0.1	0.1	0.1	
		4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}^{5}$	0.36	0.44	0.44	V
		5.5V	I _{OL} = 24mA	0.36	0.44	0.44	, v
		4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}^{5,6}$	1.65	1.65	1.65	V
		5.5V	$I_{OL} = 50 \text{mA}$	1.65	1.65	1.65	v

4. $-40^{\circ}C \le T_{J} \le +85^{\circ}C$ 5. All outputs loaded; thresholds on input associated with output under test. 6. Test time 1sec max, measurement made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 75 Ω transmission-line drive capability at 85°C

Rev 1.0 18/01/21

DC Electrical Characteristics Continued (Voltages referenced to GND)

LIMITS SYMBOL CONDITIONS PARAMETER UNITS V_{cc} 25°C 85°C FULL RANGE⁴ 4.5V 4.4 4.4 4.4 Ι_{ΟUT} = -50μΑ V 5.5V 5.4 5.4 5.4 4.5V $V_{IN} = V_{IL} \text{ or } V_{IH}^{5}$ 3.76 3.76 Minimum High-Level 3.86 V V_{OH} $I_{OL} = -24 \text{mA}$ **Output Voltage** 5.5V 4.86 4.76 4.76 $V_{IN} = V_{IL} \text{ or } V_{IH}^{5,6}$ $I_{OL} = -50 \text{ mA}$ 4.5V ---V 5.5V ---Maximum Input $V_{IN} = V_{CC}$ or GND 5.5V ±0.1 I_{IN} ±1.0 ±1.0 μA Leakage Current V_{OUT}=V_{CC} or GND, Maximum 3-State 5.5 ±0.5 ±2.5 ±2.5 μA loz leakage current $V_{IN} = V_{IL} \text{ or } V_{IH}$ Additional Maximum $V_{IN} = V_{CC} - 2.1V$ 5.5V 0.6 1.5 1.5 ΔI_{CCT} mΑ I_{CC} / Input Minimum Dynamic 5.5V V_{OLD} = 1.65V Max 75 75 **I**OLD mΑ Output Current⁷ 5.5V V_{OHD} = 3.86V Min -75 -75 **I**OHD -Maximum Quiescent $V_{IN} = V_{CC}$ or GND Supply Leakage 5.5V 4 40 40 μA Icc $I_{OUT} = 0\mu A$ Current

7. Maximum test duration 2ms, one output loaded at a time.

AC Electrical Characteristics⁸

PARAMETER	SYMBOL V _{cc}		CONDITIONS	LIMITS			UNITS
	STMBOL		CONDITIONS	25°C	85°C	FULL RANGE ⁴	UNITS
Propagation Delay,	t _{PLH,}	5V ±10%	GND = $0V$, $C_L = 50pF$,	6	7	7	ns
	t _{PHL}		$R_L = 500\Omega,$ t _r = t _f = ≤ 2.5ns	6	7	7	115
Maximum Propagation Delay, OFF-state to Low	t _{PZL}	5V ±10%	GND = 0V, C _L = 50pF, R _L = 500Ω,	5.1	6	6	ns
Maximum Propagation Delay, Low to OFF-state	t _{PLZ}		$t_r = t_f = \le 2.5$	$t_r = t_f = \le 2.5 \text{ns},$ (Figure 1)	5.0	5.3	5.3
Maximum Input Capacitance	C _{IN}	5V ±10%	V _{IN} = V _{CC} or GND	8	8	8	pF
Power Dissipation Capacitance ⁹	C _{PD}	-	T _J = 25°C, V _{CC} =5.0V		TYPI 4(pF

8. Not production tested in die form, characterized by chip design.

9. Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

Advanced CMOS TTL Input – 74ACT38

Switching Waveforms

Rev 1.0 18/01/21

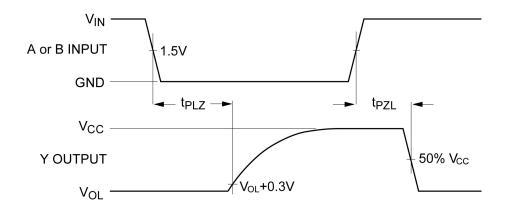
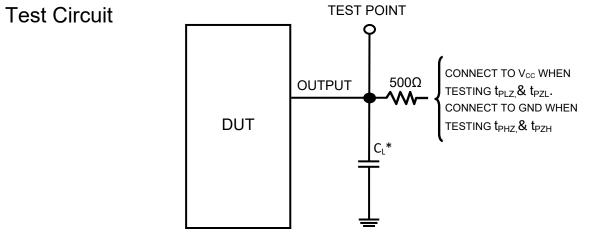



Figure 1 – Propagation Delay, Input A or B to Output Y

* Includes all probe and jig capacitance

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

