

8-bit D-Type Flip-Flop with common reset and clock inputs in bare die form

Rev 1.0 07/12/2021

Description

The 74AC273 consists of eight D-type flip-flops fabricated using a 1.5µm 5V CMOS process combining high speed performance LSTTL performance with CMOS low power consumption. Each flip-flop is equipped with buffered common Clock (CP) and common Reset ($\overline{\text{MR}}$) inputs. A low-to-high clock transition loads each flip-flop. Reset is asynchronous and enabled with active low. Inputs accept standard CMOS outputs or LSTTL outputs using pull-up resistors. Inputs are also equipped with protection circuits against static discharge and transient excess voltage.

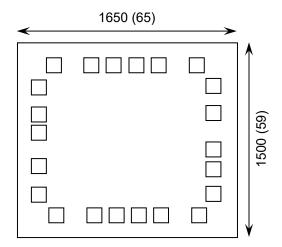
Ordering Information

The following part suffixes apply:

No suffix - MIL-STD-883 /2010B Visual Inspection

For High Reliability versions of this product please see

54AC273


Supply Formats:

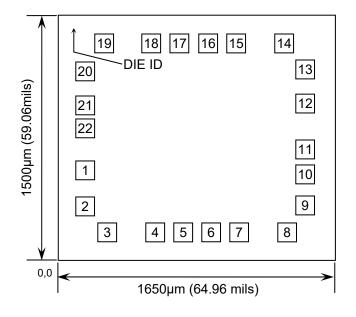
- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 460µm(18 Mils) On request
- Assembled into Ceramic Package On request

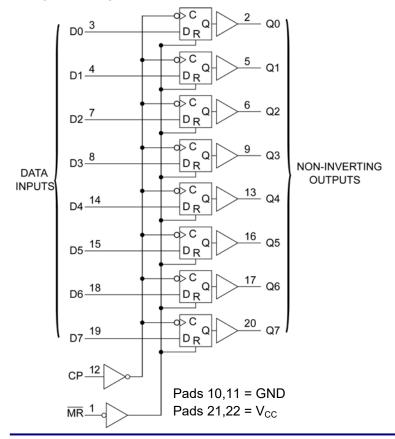
Features:

- Buffered common clock
- Buffered asynchronous master reset
- Outputs Source/Sink 24mA
- Low input current: 1µA
- Outputs directly interface CMOS, NMOS and TTL
- Operating voltage range: 2.0V to 6.0V
- Function compatible with 74HC273.

Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1650 x 1500 65 x 59	µm mils
Minimum Bond Pad Size	108 x 108 4.25 x 4.25	μm mils
Die Thickness	460 (±20) 18.11 (±0.79)	μm mils
Top Metal Composition	Al 1%Si 1.1μ	m
Back Metal Composition	N/A – Bare S	Si



Pad Layout and Functions

Rev 1.0 07/12/2021

Logic Diagram

PAD	FUNCTION	COORDINA	ATES (mm)
PAD	FUNCTION	X	Υ
1	MR	0.120	0.507
2	Q0	0.117	0.286
3	D0	0.247	0.127
4	D1	0.531	0.127
5	Q1	0.699	0.127
6	Q2	0.867	0.127
7	D2	1.035	0.127
8	D3	1.318	0.127
9	Q3	1.426	0.294
10	GND	1.426	0.483
11	GND	1.426	0.570
12	СР	1.428	0.900
13	Q4	1.426	1.120
14	D4	1.299	1.279
15	D5	1.015	1.279
16	Q5	0.847	1.279
17	Q6	0.679	1.279
18	D6	0.511	1.279
19	D7	0.228	1.279
20	Q7	0.117	1.111
21	V _{CC}	0.117	0.903
22	V _{CC}	0.117	0.816
	CONNECT CH	IIP BACK TO	V _{CC}

Truth Table

INPUTS			ОИТРИТ
MR	CP	D	Q
L	Х	X	L
Н	_∕- Н		H
Н	_~ L		L
Н	L	Χ	No Change
Н		X	No Change

H = High level (steady state)
L = Low level (steady state)
X = Don't care

Rev 1.0 07/12/2021

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage (Referenced to GND)	V _{CC}	-0.5 to +7.0	V
DC Input Voltage (Referenced to GND)	V _{IN}	-0.5 to V _{CC} +0.5	V
DC Output Voltage (Referenced to GND)	V _{OUT}	-0.5 to V _{CC} +0.5	V
DC Input Current, per pad	I _{IN}	±20	mA
DC Output Current, per pad	I _{OUT}	±50	mA
DC Supply Current, V _{CC} or GND	I _{CC}	±50	mA
Power Dissipation in Still Air ²	P _D	750	mW
Storage Temperature Range	T _{STG}	-65 to 150	°C

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic DIP package, results in die form are dependent on die attach and assembly method.

Recommended Operating Conditions³ (Voltages referenced to GND)

PARAMETER	SYMBOL	MIN	MAX	UNITS	
DC Supply Voltage		V _{CC}	2.0	6.0	V
DC Input or Output Voltage	V _{IN} ,V _{OUT}	0	V _{CC}	V	
Operating Temperature Rar	T _J	-40	+85	°C	
Output current - High	Output current - High		-	-24	mA
Output current - Low		I _{OL}	-	24	mA
Input Rise or Fall rate	V _{CC} = 3.0V		0	150	
$(V_{IN} \text{ from } 30\% \text{ to } 70\% \text{ V}_{CC})$	$V_{CC} = 4.5V$	Δt/ΔV	0	40	ns/V
(**************************************	V _{CC} = 5.5V		0	25	

^{3.} This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC Electrical Characteristics (Voltages referenced to GND)

PARAMETER	SYMBOL V _{cc}	Vac	V _{cc} CONDITIONS		UNITS		
		• 66		25°C	85°C	FULL RANGE⁴	ONTO
Minimum High-Level		3.0V	\/ ₂ = 0.1\/	2.1	2.1	2.1	
Input Voltage	V _{IH}	4.5V	$V_{OUT} = 0.1V$ or V_{CC} -0.1V	3.15	3.15	3.15	V
mpat voltage		5.5V	01 100 0.11	3.85	3.85	3.85	
Maximum Low-Level		3.0V	\/= = 0.1\/	0.9	0.9	0.9	
Input Voltage	4.5V	$V_{OUT} = 0.1V$ or V_{CC} -0.1V	1.35	1.35	1.35	V	
	5.5V	01 100 0.11	1.65	1.65	1.65		

^{4.} -40° C $\leq T_{J} \leq +85^{\circ}$ C

Rev 1.0 07/12/2021

DC Electrical Characteristics Continued (Voltages Referenced to GND)

PARAMETER	SYMBOL	V _{cc} CONDITIONS			UNITS		
	STWIDOL	▼ CC	CONDITIONS	25°C	85°C	FULL RANGE⁴	UNITS
Minimum High-Level Output Voltage		3.0V		2.9	2.9	2.9	
		4.5V	I _{OUT} ≤ -50μA	4.4	4.4	4.4	
		5.5V		5.4	5.4	5.4	
		3.0V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -12 \text{ mA}$	2.56	2.46	2.46	
	V _{OH}	4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{mA}^5$	3.86	3.76	3.76	V
		5.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{mA}^5$	4.86	4.76	4.76	
		5.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -75 \text{mA}^6$	-	-	3.85	
	V _{OL}	3.0V	Ι _{ΟυΤ} = 50μΑ	0.1	0.1	0.1	
		4.5V		0.1	0.1	0.1	
		5.5V		0.1	0.1	0.1	
Maximum Low-Level		3.0V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 12\text{mA}$	0.36	0.44	0.44	
Output Voltage		4.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 24 \text{mA}^5$	0.36	0.44	0.44	V
		5.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 24 \text{mA}^5$	0.36	0.44	0.44	
	5.5V	5.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right 75\text{mA}^6$	-	-	-	
Maximum Input Leakage Current	I _{IN}	5.5V	V _{IN} = V _{CC} or GND	±0.1	±1.0	±1.0	μA
Minimum Dynamic	I _{OLD}	5.5V	V _{OLD} = 1.65V Max	-	75	75	mA
Output Current ⁷	I _{OHD}	5.5V	V _{OHD} = 3.85V Min	-	-75	-75	111/4
Maximum Quiescent Supply Current	I _{CC}	5.5V	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0\mu A$	8	80	80	μA

^{5.} All outputs loaded; thresholds on input associated with output under test. 6. Test time 1sec max, measurement made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 75Ω transmission-line drive capability at 85° C 7. Maximum test duration 2ms, one output loaded at a time

AC Electrical Characteristics⁸ (V_{CC} 3.3V ±0.3V, V_{CC} 5V ±0.3V)

Rev 1.0 07/12/2021

PARAMETER	SYMBOL	SYMBOL V _{cc} C			UNITS		
- 7	0120 <u>1</u>	- 66	CONDITIONS	25°C	85°C	FULL RANGE⁴	
Minimum Clock Frequency (Figure 1)	3.3	3.3V	3.3V C _L = 50pF,	90	75	75	MHz
	f _{max}	5.0V	Input $t_r = t_f = 3ns$	140	125	125	IVII IZ
Maximum	4	3.3V	C _L = 50pF,	12.5	14.0	14.0	ns
Propagation Delay	t _{PLH} ,	5.0V	Input $t_r = t_f = 3$ ns	9.0	10.0	10.0	115
CP to Q (Figure 1)		3.3V	C _L = 50pF,	13.0	14.5	14.5	
		5.0V	Input t _r = t _f = 3ns	10.0	11.0	11.0	ns
Maximum	t _{PLH,}	3.3V		13.0	14.0	14.0	no
Propagation Delay		5.0V	C _L = 50pF,	10.0	10.5	10.5	ns
MR to Q (Figure 2)	+	3.3V	Input $t_r = t_f = 3ns$	12.0	14.0	14.0	ns
	t_PHL	5.0V		8.5	10.0	10.0	115
Maximum Input Capacitance	C _{IN}	-	-	4.5	4.5	4.5	pF
Power Dissipation	C _{PD}	_	T _J = 25°C,		TYPI	CAL	
Capacitance ⁹	טאָט	$V_{CC} = 5.0V$			pF		

^{8.} Not production tested in die form, characterized by chip design.

Timing Requirements 6 (V_{CC} 3.3V ±0.3V, V_{CC} 5V ±0.3V)

PARAMETER	SYMBOL	V _{cc}	CONDITIONS		LIMI	TS	UNITS
TANAMETER	OTHEOL		25°C	85°C	FULL RANGE⁴	Julia	
Minimum Setup Time, t _{su}	t _{su}	3.3V	C _L = 50pF,	5.5	6.0	6.0	ns
D to CP (Figure 3)	LSU .	5V	Input $t_r = t_f = 3ns$	4.0	4.5	4.5	
Minimum Hold Time,	t _h	3.3V C _L = 50pF,	0	0	0	ns	
D to CP (Figure 3)	·	5V	Input $t_r = t_f = 3ns$	1.0	1.0	1.0	
Minimum Pulse Width,	$\begin{array}{ c c c c }\hline & & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	C _L =		5.5	6.0	6.0	ns
CP (Figure 1)			4.0	4.5	4.5		
Minimum Pulse Width,	t _w	3.3V	C _L = 50pF,	5.5	6.0	6.0	ns
MR (Figure 2)	-w	5V	Input $t_r = t_f = 3ns$	4.0	4.5	4.5	
Minimum Recovery Time,	t _{rec}	3.3V	C _L = 50pF,	3.5	4.5	4.5	ns
MR to CP (Figure 2)	160	5V	Input $t_r = t_f = 3ns$	2.0	3.0	3.0	

^{9.} Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

Rev 1.0 07/12/2021

Switching Waveforms

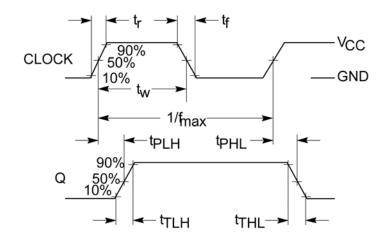


Figure 1 – Propagation Delay & Output Transition Time

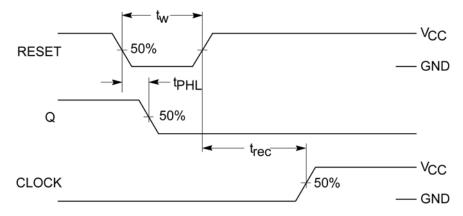
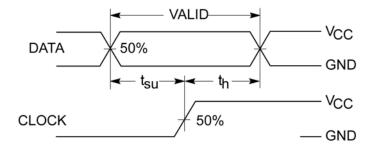
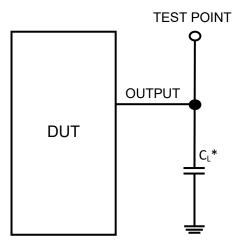


Figure 2 – Propagation Delay – Reset to Q




Figure 3 - Timing Requirements

Rev 1.0 07/12/2021

Test Circuit

^{*} Includes all probe and jig capacitance

Figure 4

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

