

Quad 2-Input NAND Gates in bare die form

Rev 1.0 19/02/21

Description

54AC00 provides x4 independent 2-input NAND gates performing the Boolean function Y = $\overline{A \cdot B}$ or Y = $\overline{A} + \overline{B}$. The device is fabricated using a 1.5µm 5V CMOS process combining high speed LSTTL performance with CMOS low power. Internal circuitry comprises of 3 stages and includes buffered output for high noise immunity and stability. Device inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

• Full Military I

Ordering Information

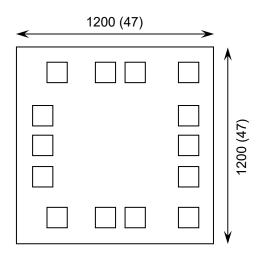
The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection+ MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

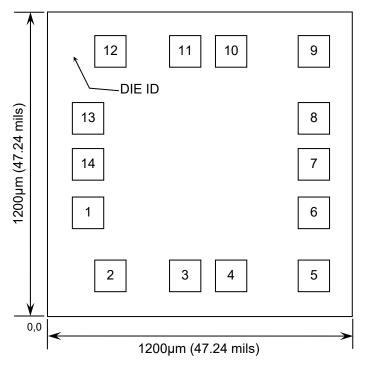
- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Ceramic Package On request

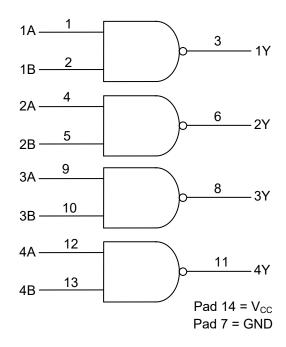
Features:

- Outputs Sink/Source 24mA
- Low Input Current: 1µA
- Outputs directly interface CMOS, NMOS and TTL
- Operating Voltage Range: 2V to 6V
- CMOS High Noise Immunity
- Function compatible with 54HC00 or 54LS00
- Full Military Temperature Range.

Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1200 x 1200 47 x 47	μm mils
Minimum Bond Pad Size	120 x 120 4.72 x 4.72	μm mils
Die Thickness	350 (±20) 13.78 (±0.79)	μm mils
Top Metal Composition	Al 1%Si 1.1μ	m
Back Metal Composition	N/A – Bare S	Si



Rev 1.0 19/02/21

Pad Layout and Functions

Logic Diagram

PAD	FUNCTION	COORDIN	ATES (µm)
י אט	FUNCTION	X	Y
1	1A	100	350
2	1B	150	100
3	1Y	480	100
4	2A	660	100
5	2B	990	100
6	2Y	990	350
7	GND	990	540
8	3Y	990	720
9	3A	990	980
10	3B	660	980
11	4Y	480	980
12	4A	150	980
13	4B	100	720
14	V _{CC}	100	540
CON	NECT CHIP BA	CK TO V _{CC} C	R FLOAT

Function Table

INP	INPUTS				
Α	В	Υ			
L	L	Н			
L	Н	Н			
Н	L	Н			
Н	Н	L			
H = High level (steady state) L = Low level (steady state)					

Rev 1.0 19/02/21

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage (Referenced to GND)	V _{CC}	-0.5 to +7.0	V
DC Input Voltage (Referenced to GND)	V _{IN}	-0.5 to V _{CC} +0.5	V
DC Output Voltage (Referenced to GND)	V _{OUT}	-0.5 to V _{CC} +0.5	V
DC Input Current	I _{IN}	±20	mA
DC Output Current, per pad	I _{OUT}	±25	mA
DC Supply Current, V _{CC} or GND, per pad	I _{cc}	±50	mA
Power Dissipation in Still Air ²	P _D	750	mW
Storage Temperature Range	T _{STG}	-65 to 150	°C

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic DIP package, results in die form are dependent on die attach and assembly method.

Recommended Operating Conditions³ (Voltages referenced to GND)

PARAMETER	R	SYMBOL	MIN	MAX	UNITS
DC Supply Voltage	V _{CC}	2	6	V	
DC Input or Output Voltage		V _{IN} ,V _{OUT}	0	V _{CC}	V
Operating Temperature Rai	TJ	-55	+125	°C	
Output Current – High	I _{OH}	-	-24	mA	
Output Current – Low	Output Current – Low			24	mA
Innut Dies and Fall Times	V _{CC} = 3.0V		0	150	
Input Rise and Fall Time (V _{IN} from 30% to 70%)	V _{CC} = 4.5V	t _r , t _f	0	40	ns/V
(**************************************	$V_{CC} = 5.5V$		0	24	

^{3.} This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $GND \le (V_{IN} \text{ or } V_{OUT}) \le V_{CC}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC Electrical Characteristics (Voltages Referenced to GND)

PARAMETER	SYMBOL V _{cc}	V _{cc}	V _{cc} CONDITIONS	LIMITS			UNITS
	STINIDOL	▼ CC	CONDITIONS	25°C	85°C	FULL RANGE⁴	UNITS
NAC		3.0V	V _{OUT} = 0.1V or	2.1	2.1	2.1	
Minimum High-Level Input Voltage	V _{IH}	4.5V V _{CC} -0.1V	3.15	3.15	3.15	V	
input voltage		5.5V	I _{OUT} ≤ 20μA	3.85	3.85	3.85	
Maximum Low-Level Input Voltage		3.0V	V _{OUT} = 0.1V or	0.9	0.9	0.9	
	V _{IL}	4.5V	V _{CC} -0.1V	1.35	1.35	1.35	V
	5.5V	5.5V	I _{OUT} ≤ 20μA	1.65	1.65	1.65	

^{4.} -55°C ≤ T_J ≤ +125°C

DC Electrical Characteristics Continued (Voltages Referenced to GND)

Rev 1.0 19/02/21

PARAMETER	SYMBOL	V _{cc}	CONDITIONS		LIMITS		UNITS
FANAMETEN	STWIDOL	▼ CC	CONDITIONS	25°C	85°C	FULL RANGE⁴	J GIALLS
		3.0V		2.9	2.9	2.9	
		4.5V	$I_{OUT} = -50\mu A$	4.4	4.4	4.4	
Minimum High-Level Output Voltage		5.5V		5.4	5.4	5.4	
	.,	3.0V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -12 \text{ mA}$	2.56	2.46	2.40	
	V _{OH}	4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{mA}^5$	3.86	3.76	3.70	V
		5.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{mA}^5$	4.86	4.76	4.70	
		5.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -50 \text{mA}^6$	-	-	3.85	
		3.0V	I _{OUT} = 50μA	0.1	0.1	0.1	
		4.5V		0.1	0.1	0.1	
		5.5V		0.1	0.1	0.1	
Maximum Low-Level		3.0V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 12\text{mA}$	0.36	0.44	0.5	
Output Voltage	V _{OL}	4.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 24 \text{mA}^5$	0.36	0.44	0.5	V
	5.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right \le 24 \text{mA}^5$	0.36	0.44	0.5		
		5.5V	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\left I_{OUT} \right 50 \text{mA}^6$	-	-	1.65	
Maximum Input Leakage Current	I _{IN}	5.5V	V _{IN} = V _{CC} or GND	±0.1	±1.0	±1.0	μА
Minimum Dynamic	I _{OLD}	5.5V	V _{OLD} = 1.65V Max	-	75	50	mA
Output Current ⁷	I _{OHD}	5.5V	V _{OHD} = 3.85V Min	-	-75	-50	111/-1
Maximum Quiescent Supply Current	I _{CC}	5.5V	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0\mu A$	4	40	80	μΑ

AC Electrical Characteristics⁸ (V_{cc} 3.3V ±0.3V, V_{cc} 5V ±0.3V)

PARAMETER	SYMBOL	V _{cc}	CONDITIONS	LIMITS			UNITS
	OTHIBOL	▼00	CONDITIONS	25°C	85°C	FULL RANGE⁴	5,4116
Maximum Propagation Delay, Input A or B to Output Y (Figure 1,2)	t _{PLH}	3.3V	C _L = 50pF, Input	9.5	10.0	11	ns
	ΨLH	5.0V	$t_r = t_f = 3$ ns	8	8.5	9	113
	t _{PHL}	3.3V (C _L = 50pF, Input	8.0	8.5	8.5	ns
	PHL	$\begin{array}{c c} & & \text{input} \\ \hline 5.0V & & t_r = t_f = 3\text{ns} \end{array}$		6.5	7.0	7.0	110

Rev 1.0 19/02/21

AC Electrical Characteristics Continued⁸

PARAMETER	SYMBOL V _{CC}	V _{cc} CONDITIONS	LIMITS			UNITS	
TAXABLE LIK	01111B02	• 66	GONDINGNO	25°C	85°C	FULL RANGE⁴	J.II.I
Maximum Input Capacitance	C _{IN}	5	-	4.5	4.5	4.5	pF
Power Dissipation Capacitance Per Gate ⁶	C _{PD}	-	T _A = 25°C, V _{CC} =5.0V		TYPI0		pF

^{5.} All outputs loaded; thresholds on input associated with output under test. **6.** Test time 1sec max, measurement made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 75Ω transmission-line drive capability at 125°C **7.** Maximum test duration 2ms, one output loaded at a time Not production tested in die form, characterized by chip design and tested in package. **8.** Used to determine the no-load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$.

Switching Waveform

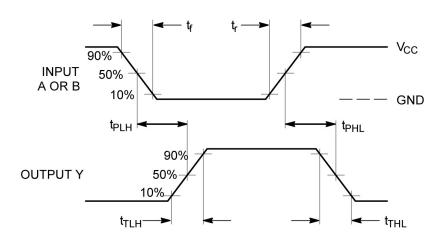
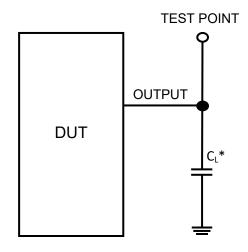



Figure 1 – Propagation Delay & Output Transition Time

Test Circuit

* Includes all probe and jig capacitance

Figure 2

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

