ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET - N-Channel, Silicon Carbide 1200 V, 20 mΩ

NTC020N120SC1

Description

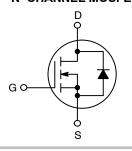
Silicon Carbide (SiC) MOSFET uses a completely new technology that provide superior switching performance and higher reliability compared to Silicon. In addition, the low ON resistance and compact chip size ensure low capacitance and gate charge. Consequently, system benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size.

Features

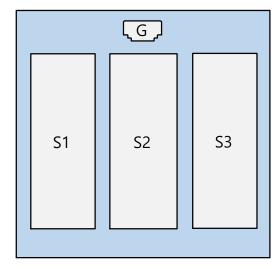
- $1200 \text{ V} @ \text{T}_{\text{J}} = 175^{\circ}\text{C}$
- Typ $R_{DS(on)} = 20 \text{ m}\Omega$ at $V_{GS} = 20 \text{ V}$, $I_D = 60 \text{ A}$
- High Speed Switching with Low Capacitance
- 100% UIL Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Industrial Motor Drive
- UPS
- Boost Inverter
- PV Charger



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
1200 V	28 mΩ @ 20 V	103 A

N-CHANNEL MOSFET

DIE DIAGRAM

Die Information

Wafer Diameter 6 inch
 Die Size 4,300 x 6,300 μm

Metallization

 $\begin{array}{ccc} \text{Top} & \text{Ti/TiN/Al} & 5~\mu\text{m} \\ \text{Back} & \text{Ti/NiV/Ag} \\ \bullet \text{ Die Thickness} & \text{Typ. 200}~\mu\text{m} \\ \bullet \text{ Gate Pad Size} & 600~x~310~\mu\text{m} \\ \end{array}$

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

Die Cross Section Die Layout 4300 Source Source Passivation (Polyimide) N- Epic **S**1 S2 S3 4519 6300 N+ Substrate 1158.5 1102

Passivation Information

- Passivation Material: Polymide (PSPI)
- Passivation Type: Local Passivation
- Passivation Thickness 10 μm
 - : Passivation Area

Die Layout

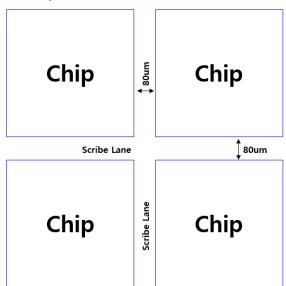


Figure 1. Bare Die Dimensions

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

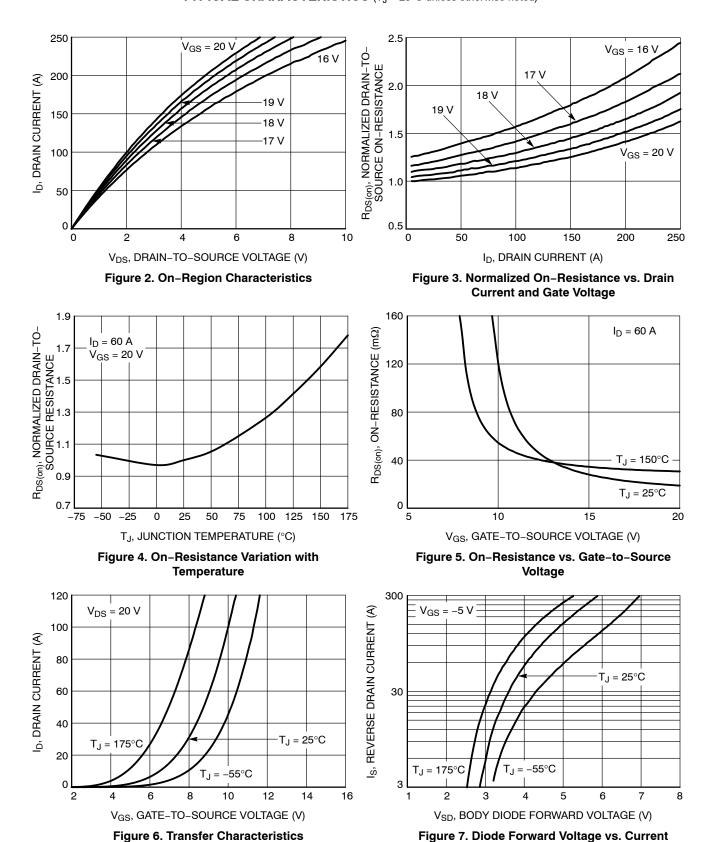
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	1200	V		
Gate-to-Source Voltage			V_{GS}	-15/+25	V
Recommended Operation Values of Gate- to-Source Voltage	T _C < 175°C		V_{GSop}	-5/+20	V
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 25°C	I _D	103	Α
Power Dissipation $R_{\theta JC}$	1		P _D	535	W
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 100°C	I _D	73	А
Power Dissipation $R_{\theta JC}$	1		P _D	267	W
Pulsed Drain Current (Note 2)	T _C = 25°C		I _{DM}	412	Α
Single Pulse Surge Drain Current Capability	T_C = 25°C, t_p = 10 μs, R_G = 4.7 Ω		I _{DSC}	807	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	54	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 23 A, L = 1 mH) (Note 3)			E _{AS}	264	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{ heta JC}$	0.28	°C/W

^{1.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


^{2.} Repetitive rating, limited by max junction temperature. 3. E_{AS} of 264 mJ is based on starting $T_J = 25^{\circ}C$; L = 1 mH, $I_{AS} = 23$ A, $V_{DD} = 120$ V, $V_{GS} = 18$ V.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1200	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C	-	900	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 25°C	-	_	100	μΑ
		V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 175°C	-	_	250	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +25/-15 V, V _{DS} = 0 V	-	_	±1	μΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	1.8	2.7	4.3	V
Recommended Gate Voltage	V_{GOP}		-5	_	+20	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 20 \text{ V}, I_D = 60 \text{ A}, T_J = 25^{\circ}\text{C}$	-	20	28	mΩ
		V _{GS} = 20 V, I _D = 60 A, T _J = 150°C	-	30	-	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 60 A	-	28	-	S
CHARGES, CAPACITANCES & GATE	RESISTANCE					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	-	2890	-	pF
Output Capacitance	C _{OSS}]	-	260	-	1
Reverse Transfer Capacitance	C _{RSS}]	-	22	-	1
Total Gate Charge	Q _{G(tot)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V}, I_D = 80 \text{ A}$	-	203	-	nC
Threshold Gate Charge	Q _{G(th)}]	-	33	-	1
Gate-to-Source Charge	Q _{GS}]	-	66	-	1
Gate-to-Drain Charge	Q_{GD}]	-	47	-	1
Gate Resistance	R_{G}	f = 1 MHz	-	1.81	-	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 800 \text{ V},$	-	25	_	ns
Rise Time	t _r	I_D = 80 A, R_G = 2 Ω , Inductive Load	-	57	-	-
Turn-Off Delay Time	t _{d(off)}]	-	45	-	1
Fall Time	t _f]	-	11	-	1
Turn-On Switching Loss	E _{ON}]	-	2718	-	μJ
Turn-Off Switching Loss	E _{OFF}]	-	326	-	1
Total Switching Loss	E _{TOT}]	-	3040	-	1
DRAIN-SOURCE DIODE CHARACTER	RISTICS					
Continuous Drain-to-Source Diode Forward Current	I _{SD}	V _{GS} = -5 V	-	_	54	Α
Pulsed Drain-to-Source Diode Forward Current (Note 2)	I _{SDM}	V _{GS} = -5 V	-	_	412	Α
Forward Diode Voltage	V_{SD}	$V_{GS} = -5 \text{ V}, I_{SD} = 30 \text{ A}$	-	3.7	-	V
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A},$	_	31	-	ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs	_	240	-	nC
Reverse Recovery Energy	E _{REC}	1 1	-	10	-	μJ
Peak Reverse Recovery Current	I _{RRM}	1	_	15	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

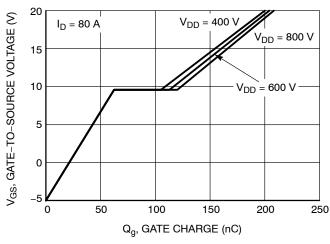


Figure 8. Gate-to-Source Voltage vs. Total Charge

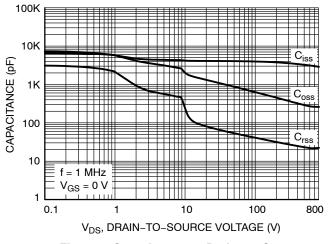


Figure 9. Capacitance vs. Drain-to-Source Voltage

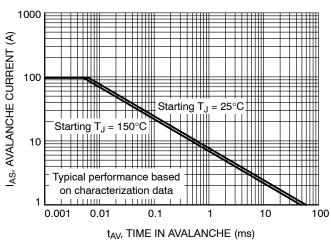


Figure 10. Unclamped Inductive Switching Capability

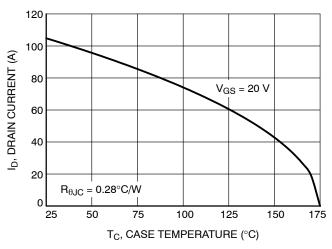


Figure 11. Maximum Continuous Drain Current vs. Case Temperature

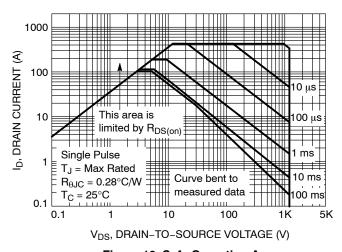


Figure 12. Safe Operating Area

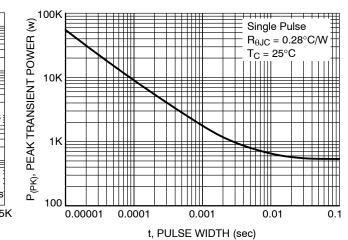


Figure 13. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T, = 25°C unless otherwise noted)

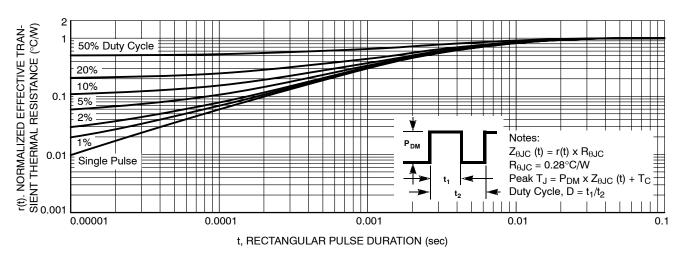


Figure 14. Junction-to-Ambient Thermal Response

ORDERING INFORMATION AND PACKAGE MARKING

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTC020N120SC1	N/A	Die	Wafer	N/A	N/A	N/A

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products perein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative