

Ultra-low power, two channel capacitive sensor and touch switch for human body detection

1 General Description

The integrated circuit MS8891A is an ultra-low power, two channel capacitive sensor specially designed for human body detection. It offers two operating modes: meter mode or switch mode. In switch mode the sensor capacitance is compared with the internal reference capacitance. The sensor output changes polarity if the sensor capacitance falls below or rises above a threshold capacitance. The threshold capacitance can be individually set for both channels. The MS8891A can also be operated in meter mode where the absolute capacitance values of the sensor channels are measured. The MS8891A is configured via an I²C serial interface. The comparator outputs are available at circuit pins in switch mode or can be read via the I²C serial interface. The configuration of the various options and the operation of the meter mode are done via the I²C serial interface. After programming the configuration to the one-timeprogrammable (OTP) memory, the MS8891A can be operated in switch mode as a single chip solution.

2 Applications

- Human body detection (e.g. in-ear phone, finger detection)
- Wrist detection (e.g. wearables)
- Fluid detection (e.g. coffee machine)
- Close proximity sensing
- Touch switch

3 Typical application

FOR AVAILABILITY IN BARE DIE FORM CONTACT SALES@DIEDEVICES.COM

4 Features

- Two capacitive sensor channels with individual outputs and inputs
- One or two channel operation
- Meter mode or switch mode
- Capacitance meter with 4 measuring ranges covering 0 to 1.6pF with a resolution of 8 bits
- Individually programmable threshold capacitance for both sensor channels in switch mode
- Programmable measuring interval in switch mode (single trigger, 2 measurements/s, 32 measurements/s, permanent)
- Programmable noise filter in switch mode
- Comparator outputs available at pins OUT1 (sensor CS1) and OUT2 (sensor CS2) in switch mode
- Polarity of comparator outputs selectable by pin POL
- OUT1 and OUT2 can be configured to output logical OR (OUT1) and AND (OUT2) combination of switch mode results
- CMOS or open-drain output drivers
- I²C serial interface available at pins SDA and SCL
- No external components needed
- Sensors capacitance can be realized with conductive tracks on PCB or casing
- Idle current typ. 50nA
- Active current during measurement typ. 11µA
- Average current for 2 measurements/s in switch mode typ. 725nA (1 channel, no noise filter)
- Voltage operating range 1.8 to 4.5V
- Temperature operating range -40 to 85°C
- Available in QFN16 3x3mm

5 Pinout

6 Ordering Information

Тур	Package	Shipping	Article No.			
MS8891A	QFN16 3x3mm	Samples on request				
Table 1: Ordering information						

7 Pin description

Pin	Symbol	Туре	Description
1	VDD	supply	Positive supply voltage
2	POL	digital input	Sets polarity of OUT1 and OUT2
			POL = '0': OUTx is high if $C_{sensor} < C_{TH}$
			POL = '1': OUTx is high if $C_{sensor} > C_{TH}$
3	TRIGGER	digital input	External trigger to start measurement in switch mode
			TRIGGER is also used for applying the programming
			voltage during programming of the OTP memory
4	VSS	supply	Negative supply voltage
5	n.c.		not connected; pin can be left open
6	SB1	analog input	Input sensor CS1
7	n.c.		not connected; pin can be left open
8	OUT1	digital output	Switch mode output of sensor CS1 (CMOS or open-drain)
9	OUT2	digital output	Switch mode output of sensor CS2 (CMOS or open-drain)
10	SA1	digital output	Output sensor 1
11	SA2	digital output	Output sensor 2
12	SDA	digital I/O	SDA (I ² C interface)
13	SCL	digital input	SCL (I ² C interface)
14	n.c.		not connected; pin can be left open
15	SB2	analog input	Input sensor CS2
16	n.c.		not connected; pin can be left open
	•	•	Table 2: Pin description

Notes:

- 1. SB1 and SB2 are internally switched to VSS over $8k\Omega$ resistors when the measurement is inactive
- 2. All digital inputs must be connected to either VSS or to VDD in the application except pins SDA and SCL

8 Description

8.1 Basic functionality

Figure 3 shows the block diagram of the circuit MS8891A. The circuit has two capacitive sensor channels CS1 and CS2. Sensor channel CS1 consists of sensor output SA1 and sensor input SB1, sensor channel CS2 of sensor output SA2 and sensor input SB2. The sensor outputs (SA1, SA2) are separated to allow independent function of the sensor channels. The sensor capacitance is

measured by comparing the charge transferred at the sensor input with a reference charge defined by Cref and the voltage VDAC. VDAC is the output of the digital-to-analog converter DAC1. The equilibrium, where both charges are equal is found with a binary search. The equilibrium is defined by the following equation.

$$V_{DD} \cdot CS = VDAC \cdot Cref$$

The MS8891A can be operated in meter mode or switch mode. In meter mode the sensor capacitances CS1 and CS2 are measured and converted to 8-bit digital values which represent the absolute sensor capacitances. The measured values are read via the I2C serial interface. In switch mode the charge transferred at the sensor input, which linearly depends on the sensor capacitance, is compared with a reference charge defined by Cref and VDAC. If the sensor capacitance drops below or rises above the threshold capacitance value (CTH1 for CS1, CTH2 for CS2) is detected by the comparator CP1 and indicated by a change of the signal CP from logical 0 to logical 1. Noise suppression is done with a programmable noise filter. The noise filter has three levels (no, low and high filter). The signals CPF1 (sensor channel 1) and CPF2 (sensor channel 2) are the sensor outputs after the noise filter and input to the output logic (direct or combinational output) with the adjacent output drivers (CMOS or open-drain). The final results are available at the outputs OUT1 and OUT2. The polarity of sensor signals CPF1 and CPF2 can be set by the input POL (POL = '0': CPFx is logical '1' if CSx is smaller than CTHx; POL = '1': CPFx is logical '1' if CSx is larger than CTHx). The input POL is evaluated during the measuring sequence and has to be stable during this time. The states of the switch mode output signals CPF1 and CPF2 can be read via the I2C serial interface. Several options can be programmed to adapt the capacitive sensor function to the application. The options are detailed in sections 8.1.7 to 8.1.10.

8.1.1 Measuring sequence in switch mode

In switch mode the capacitance at the sensor channel is compared with a threshold capacitance. This is done by comparing charges. The results of the comparison are available at the outputs OUT1 and OUT2 or over the I^2C serial interface. A measuring sequence in switch mode is either started with a single trigger (over input pin TRIGGER or by the I^2C serial command COMP; only one measuring sequence is started) or executed periodically. The measuring method/interval is defined by option MI in the options register OPT1 and by the logical value of pin TRIGGER.

The measuring sequence always has the same format. It starts with the evaluation of sensor CS1 followed by the evaluation of sensor CS2. Each measuring cycle has 1 (M1), 4 (M1 to M4) or 16 (M1 to M16) measuring phases. The number of measuring phases is defined by the level of the noise filter. The level of the noise filter is set according to option CF in the options register OPT1. The noise filter is switched off completely if option NoF (options register OPT2) is set to logical '1'. The evaluation results are available after the end of the completed measuring sequence. Figure 4, Figure 5 and Figure 6 show the measuring sequences for different filter levels and for two sensor channels (CS1 and CS2). Only sensor channel CS1 is evaluated if bit SNG in the register OPT1 is set to logical '1'.

The OTP memory read-out sequence is started $\frac{1}{2} t_{OTP}$ before the first measuring phase M1 and stopped at the first falling edge of SA1. The duration of t_{OTP} is equal to one measuring phase. The read-out of the OTP memory bits can be suppressed in RAM mode (register OPT2). This can be important for proper evaluation of the threshold capacitance. RAM mode is only possible if input TRIGGER is set to logical '1'.

8.1.2 Measuring sequence in meter mode

The meter mode is used to measure the absolute sensor capacitances of CS1 and CS2. The measured values of CS1 and CS2 can be used to configure the switch mode or used in a connected microcontroller for further evaluation. The meter mode is started by sending the command MCS to the MS8891A. Meter mode is only possible if input TRIGGER is set to logical '1' and the measuring interval MI in the options register OPT1 is set to single trigger before applying the command MCS. The command MCS runs through the measuring sequence as shown in Figure 7. The sensor capacitance CS1 is measured first followed by CS2. The 8-bit digital capacitance value (B7 to B0) is evaluated with a successive approximation ADC via a binary search through all quantization levels. The measurement is finished after the measurement of the last bit (B0) of CS2. The MS8891A enters the idle mode (oscillator disabled) after the end of the measurement.

Only sensor channel CS1 is measured if bit SNG in the register OPT1 is set to logical '1'.

8.1.3 Clock generation and current consumption

The MS8891A contains an integrated oscillator as main clock source. The oscillator runs nominally at f_{OSC} = 32.8kHz. The oscillator is used to control the measuring interval and the measuring sequences and runs continously if the measuring interval MI is set to periodic or permanent. The current consumption is highest during the measurement sequence where measurements blocks are active. The oscillator is not needed to control the measuring interval if the measuring interval MI is set to single trigger. In this case the oscillator is switched off at the end of the measuring sequence and the MS8891A enters the idle state.

8.1.4 Single hardware trigger (switch mode)

Pin TRIGGER can be used to trigger one single compare measurement. A negative pulse at pin TRIGGER of duration t_{TRG} activates a single trigger. A single measuring sequence is started after the time t_{TRG} . A trigger of a single measurement is only possible if the measuring interval MI is set to single trigger.

8.1.5 Single software trigger (switch mode)

Command COMP executes one single compare measurement. A trigger of a single measurement is only possible if the measuring interval MI is set to single trigger and pin TRIGGER is set to logical '1'.

8.1.6 Stand-alone operation in switch mode

After programming the non-volatile memory, the MS8891A can be used in switch mode without control of a microcontroller. Pin TRIGGER must be set to logical '0' for periodic or permanent measuring interval or to logical '1' for single trigger operation.

Pin TRIGGER set to logical '0' automatically starts a compare measurement about 30ms after powerup. This first measurement reads-out the non-volatile memory and sets the programmed options. The following measurements are executed according to the programmed interval. The measuring interval is 32 measurements per seconds if the measuring interval MI is not programmed (MI[1:0] = '00') Registers CTH1, CTH2 and OPT1 are always overwritten by the non-volatile memory contents prior

Registers CTH1, CTH2 and OPT1 are always overwritten by the non-volatile memory contents prior to a measurement if pin TRIGGER is set to logical '0'. Register OPT2 is in reset state if pin TRIGGER is set to logical '0'.

8.1.7 Measuring range

Four measuring ranges can be selected according to the following table in the options register OPT1. The measuring ranges can be individually selected for CS1 (option CR1) and CS2 (option CR2).

Range	ADC/DAC	CS r	Unit	
CR	Resolution	Min.	Max.	
1	1.6	0	400	fF
2	1.6	400	800	fF
3	1.6	800	1200	fF
4	1.6	1200	1600	fF

Table 3: Measuring range

8.1.8 Noise filter

The output CP of the comparator is input to a digital noise filter. Three different levels of noise suppression can be selected:

• No noise filter

The noise filter is switched-off if option NoF in the options register OPT2 is set. Option NoF overrules the settings made with option bit CF. The noise filter can only be disabled with option bit NoF if pin TRIGGER is set to logical '1'.

• Noise suppression CF = low

4 measurements are performed per measurement cycle. The signal at the output of the noise filter (CPF1 or CPF2) changes the state if at least 3 measurements per measurement cycle are equal (= 3 detections). The signal at the output of the noise filter remains at its previous state otherwise.

• Noise suppression CF = high

16 measurements are performed per measurement cycle. The signal at the output of the noise filter (CPF1 or CPF2) changes the state if at least 12 measurements per measurement cycle are equal (= 12 detections). The signal at the output of the noise filter remains at its previous state otherwise.

Noise			Measurements	Minimum	Measuring	sequence
suppression	NoF	CF	per sensor	number of detections	2 sensors	1 sensor
No	1	Х	1	1	0.12 ms	0.06 ms
Low	0	0	4	3	0.49 ms	0.24 ms
High	0	1	16	12	1.95 ms	0.98 ms

Table 4: Noise suppression

Note: The measuring sequence time does not include the OTP read-out time (see section 8.1.1).

8.1.9 Hysteresis

The comparator has a built-in hysteresis as an additional noise filter. The amplitude of the hysteresis is equal to +/- CU. CU is the unit capacitance and typically 1.6fF. The hysteresis is switched off in meter mode and is also switched off when the noise filter is switched off (bit NoF in options register OPT2).

8.1.10 Measuring interval

In switch mode the measuring sequence can be executed once (single trigger), periodically or permanently. Four options are available. The minimum measurement interval is given by twice the time of the measurement sequence plus $\frac{1}{2}$ t_{OTP}.

Noise	Measuring interval <i>MI</i>							
suppression CF	single trigger	periodic slow	periodic fast	Permanent (measuring frequency)				
				2 sensors	1 sensor			
No	aingla	2	32	3.6 kHz	6.6 kHz			
Low	single	measurements	measurements	1.0 kHz	1.9 kHz			
High	measulement	per second	per second	0.25 kHz	0.5 kHz			

Table 5: Measuring interval

8.1.11 Output logic and drivers

CPF1 (sensor channel 1) and CPF2 (sensor channel 2) are outputs of the digital noise filter and input to the output logic with the adjacent output drivers. The truth table of the output logic is given in Table 6. Option bit MD (register OPT2) and input pin POL are control inputs of the combinational logic.

MD	POL	OUT1	OUT2				
0	0	CPF1	CPF2				
0	1	NOT CPF1	NOT CPF2				
1	0	CPF1 OR CPF2	CPF1 AND CPF2				
1	1	(NOT CPF1) OR (NOT CPF2)	(NOT CPF1) AND (NOT CPF2)				
	Table 6: Output logic						

Notes:

- 1. Input pin POL is only evaluated during the measuring sequence
- 2. Option bit MD is continuously evaluated

Option DRV (register OPT2) defines the function of the output stage. The output stage can be CMOS (output is active low or active high) or open-drain (output is active low only; high level must be externally driven).

DRV	Driver OUT1	Driver OUT2			
0	CMOS	CMOS			
1	open-drain	open-drain			
Table 7: Output driver					

9 I²C interface

The MS8891A has a slave receiver/transmitter I^2C serial interface. SDA is data I/O and SCL is clock. SDA is used as an input or as an open-drain output. It is actively pulled low and is passively held high by the pull-up resistor on the I^2C bus. 175k Ω Pull-up resistors are internally connected to SDA and SCL. The impedance on the I^2C bus can be lowered by additional external resistors if needed.

9.1 Supported I²C protocol

The following symbol set is used in the subsequent figures showing the I²C protocol.

- S = START symbol
- Sr = START repeated
- P = STOP symbol
- A = Acknowledge bit
- sent from I²C slave
- sent from I²C master

9.1.1 Addressing

The I^2C slave address has 7 bits. The fixed slave address of the MS8891A is shown in the following table.

Bit	A6	A5	A4	A3	A2	A1	A0
Value	0	1	0	0	0	1	0
Table 8: Fixed I ² C slave address of MS8891A							

9.1.2 I²C master writes command

This protocol is used, if the I^2C master only needs to send a single command to the MS8891A without additional data. The 8-bit command C7 to C0 is transmitted in the first data byte.

9.1.3 I2C master writes one byte

This protocol is used, when the I^2C master needs to program a register. The command part (C7 to C0) specifies the write register command including the selection of the register. The data byte (D7 to D0) contains the register content to be written.

9.1.4 I²C master reads one byte

In order to read a register, the I^2C master first has to send the corresponding read command. Therefore the transmission starts with a command-write sequence. The transmission is not stopped after this. A repeated start is sent followed by a retransmission of the address. In this second part the R/W bit is set to logical high, indicating to the slave that it must transmit the data byte.

9.2 I²C command table

Table 9 is a list of all allowed commands. Other commands are not allowed.

Command byte (C7 to C0)	Symbol	Function	Transfer type
00h	MCS	Measure CS1 and CS2	Command
01h	RCS1	Read CS1 (register REG1)	Read 1 byte
02h	RCS2	Read CS2 (register REG2)	Read 1 byte
03h	COMP	Compare (switch mode)	Command
04h	RRES	Read comparison results (register RES)	Read 1 byte
05h	WTH1	Write register CTH1	Write 1 byte
06h	RTH1	Read register CTH1	Read 1 byte
07h	WTH2	Write register CTH2	Write 1 byte
08h	RTH2	Read register CTH2	Read 1 byte
09h	WOPT1	Write register OPT1	Write 1 byte
0Ah	ROPT1	Read register OPT1	Read 1 byte
0Bh	WOPT2	Write register OPT2	Write 1 byte
0Ch	ROPT2	Read register OPT2	Read 1 byte
0Dh	PTH1	Program register CTH1 to OTP memory	Command
0Eh	PTH2	Program register CTH2 to OTP memory	Command
0Fh	POPT1	Program register OPT1 to OTP memory	Command

Table 9: I²C command table

9.3 Register description

9.3.1 Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset value
REG1		REG1[7:0]						'0000 0000'	
REG2		REG2[7:0]						'0000 0000'	
CTH1		CTH1[7:0]							'0000 0000'
CTH2		CTH2[7:0]							'0000 0000'
OPT1	SNG	SNG MI[1:0] CF CR2[1:0] CR1[1:0]		'0000 0000'					
OPT2	n/a MD DRV NoF INT RAM		'xx00 0000'						
RES		n/a CPF2 CPF1						'xxxx xx00'	

Table 10: Registers

9.3.2 REG1: Capacitance value of sensor CS1

Bit(s)	Symbol	Function	Reset value			
7:0	REG1[7:0]	Capacitance value of sensor CS1.	'0000 0000'			
		The value is binary coded. The LSB value is defined				
		by the unit capacitance CU (typ. 1.6fF)				
	Table 11: Description of PEC1 - canacitance value of sensor CS1					

Table 11: Description of REG1 – capacitance value of sensor CS1

9.3.3 **REG2: Capacitance value of sensor CS2**

Bit(s)	Symbol	Function	Reset value			
7:0	REG2[7:0]	Capacitance value of sensor CS2.	'0000 0000'			
		The value is binary coded. The LSB value is defined				
		by the unit capacitor CU (typ. 1.6fF)				
	Table 12: Description of REG2 – capacitance value of sensor CS2					

Table 12: Description of REG2 – capacitance value of sensor CS2

9.3.4 CTH1: Threshold capacitance for sensor CS1

Bit(s)	Symbol	Function	Reset value		
7:0	CTH1[7:0]	Threshold capacitance value for sensor CS1 in	'0000 0000'		
		switch mode. The value is binary coded. The LSB			
		value is defined by the unit capacitor CU (typ. 1.6fF)			
	Table 13: Description of CTH1 Threshold canacitance for sensor CS1				

Table 13: Description of CTH1 – Threshold capacitance for sensor CS1

9.3.5 CTH2: Threshold capacitance for sensor CS2

Bit(s)	Symbol	Function	Reset value			
7:0	CTH2[7:0]	Threshold capacitance value for sensor CS2 in switch mode. The value is binary coded. The LSB value is defined by the unit capacitor CLL (typ. 1.6fE)	ʻ0000 0000'			

Table 14: Description of CTH2 – Threshold capacitance for sensor CS2

9.3.6 OPT1: Options register 1

Bit(s)	Symbol	Value	Function	Reset value
7	SNG		Active sensors	'0'
		'0'	CS1 and CS2	
		'1'	CS1	
6:5	MI[1:0]		Measuring interval	'00'
		'00'	single trigger	
		'01'	periodic, 32 measurements per second	
		'10'	periodic, 2 measurements per second	
		'11'	permanent (see Table 4 for details)	
4	CF		Noise suppression	'0'
		'0'	low (3/4 detections)	
		'1'	high (12/16 detections)	
			Note: Bit NoF overrules this setting	
3:2	CR2[1:0]		Measuring range CR for sensor CS2	'00'
		'00'	CR = 1	
		'01'	CR = 2	
		'10'	CR = 3	
		'11'		
1.0	004[4:0]		See Table 3 for details	(00)
1:0	CRITIO	(00)		100
		00		
			CR = 3	
		10	CR = 4	
		.11,	See Table 3 for details	

Table 15: Description of OPT1 – options register 1

9.3.7 OPT2: Options register 2

Bit(s)	Symbol	Value	Function	Reset value
7:6	n/a		n/a	n/a
5	MD	'0'	OUT1 = CPF1 \oplus POL; OUT2 = CPF2 \oplus POL ¹	ʻ0'
		'1'	$OUT1 = (CPF1 \oplus POL) OR (CPF2 \oplus POL);$	
			$OUT2 = (CPF1 \oplus POL) AND (CPF2 \oplus POL)$	
4	DRV	'0'	CMOS output driver (OUT1, OUT2)	ʻ0'
		'1'	Open-drain output driver (OUT1, OUT2)	
3	NoF	ʻ0'	Noise filter switched on	'0'
		'1'	Noise filter switched off	
2:1	INT[1:0]		Interrupt over I ² C bus	'00'
		'00'	Interrupt mode disabled	
		'01'	Interrupt if CPF1 state changes	
		'10'	Interrupt if CPF2 state changes	
		'11'	Interrupt if CPF1 or CPF2 state changes	
0	RAM		Source of configuration	ʻ0'
		'0'	ROM mode: CTH1, CTH2, OPT1 are overwritten	
			by corresponding OTP memory	
			registers prior to measurement	
		'1'	RAM mode: CTH1, CTH2, OPT1 are never	
			overwritten prior to measurement	

Table 16: Description of OPT2 – options register 2

Note: The OPT2 register is in reset state if pin TRIGGER is set to logical '0'

9.3.8 RES: Comparison result register

Bit(s)	Symbol	Value	Function	Reset value
7:2	n/a		n/a	n/a
1	CPF2	'0' '1'	Comparison result sensor CS2 (CPF2) CS2 > CTH2 (POL = 0) CS2 < CTH2 (POL = 0) Note: The output value is inverted with POL = 1	,0,
0	CPF1	'0' '1'	Comparison result sensor CS1 (CPF1) CS1 > CTH1 (POL = 0) CS1 < CTH1 (POL = 0) Note: The output value is inverted with POL = 1	ʻ0'

Table 17: Description of RES - comparison result

¹ The Boolean operator \oplus represents the "exclusive or" function

MS8891A

9.4 Interface timing

9.5 Interrupt over I²C bus

In order to flag a change of the signals CPF1 or CPF2 over the I^2C bus, the MS8891A can behave like an I^2C master with restricted functionality. A change is signaled by sending a START condition, immediately followed by a STOP condition. This is illustrated in Figure 14. No further I^2C master capabilities are supported.

The I²C master has to detect the START-STOP condition and react accordingly. In order to enable this mode, the MS8891A has to be set into interrupt mode. The Interrupt mode and the interrupt conditions are specified in the register OPT2.

10 OTP memory

10.1 RAM or ROM operation

Option RAM in the register OPT2 defines if the configuration registers CTH1, CTH2 and OPT1 are overwritten by the corresponding OTP memory registers prior to each measurement. The default logical state of option RAM is '0' after power-up. This means that the registers are overwritten from the OTP memory prior to measurement. Before changing any of the registers CTH1, CTH2 or OPT1 option RAM must be set to logical '1'. This guarantees that the volatile registers CTH1, CTH2 and OPT1 are not overwritten again by the OTP memory contents prior to any measurement. Option RAM can only be set if pin TRIGGER is set to logical '1'.

10.2 OTP programming

After setting the registers CTH1, CTH2 and OPT1 the register contents can be programmed to the OTP memory. These registers must be programmed to the OTP memory if the MS8891A needs to function stand-alone. The OTP memory bits can be programmed once from logical '0' to logical '1'. Once programmed, they cannot be reset to logical '0' anymore.

The OTP programming sequence is started with one of the commands PTH1 (OTP programming of register CTH1), PTH2 (OTP programming of register CTH2) or POPT1 (OTP programming of register OPT1). These commands enable the programming mode. The non-volatile programming of the OTP memory bits is then done by applying a programming pulse at pin TRIGGER with voltage V_{PROG} and duration t_{PROG} . The programming mode must be left latest after the OTP programming of the last register. This is done by sending any I²C command except PTH1, PTH2, POPT1 to the MS8891A.

11 Application information

11.1 Basic sensor design

Many parameters define the sensor's capacitance value and its sensitivity. It is therefore not possible to give exhaustive design guidelines. The following design guidelines are meant as a starting point for the application specific sensor design. More details are given in the MS8891A application note (separate document).

Figure 16 shows a basic sensor layout. The sensor capacitor has two electrical conductors SA (SA1 or SA2) and SB (SB1 or SB2). SA is the transmitter and SB is the receiver. The transmitter SA surrounds the receiver as completely as possible. This gives the highest capacitance and also the highest immunity to noise. The sensor's capacitance is increased by increasing the sensor's antenna length. The sensor's capacitance is also increased by lowering the distance between the transmitter and the receiver.

It is important to shield (e.g. with VSS) the receiver antenna between the MS8891A package pins and the sensor area. The shielding capacity must not exceed 5pF. If properly shielded, the sensor is only sensitive at the sensor area and also the capacitance is only defined by the sensor area.

Figure 17 shows the typical sensor's relative capacitance value as a function of the distance to an object. The sensor capacitance is changed if an object (e.g. finger) is approaching the sensor area. The dependence between sensor capacitance and distance to the object depends on many parameters and must be evaluated in the application. A small distance between SA and SB reduces the relative sensitivity for large distances (curve A is almost flat for large distances). And a large distance between SA and SB increases the relative sensitivity for large distances (curve B is steeper than curve A for larger distances).

12 Electrical Characteristics

12.1 Limiting values and ESD protection

Name	Parameter	Min	Max	Unit
V _{DD}	Positive supply voltage wrt to V _{SS}	-0.5	9.0	V
VI	Input voltages wrt to V _{SS}	-0.5	V _{DD} +0.5	V
I _{I,} I _O	Input and output currents	-10	10	mA
I _{VSS}	Total current to V _{SS}	-25	25	mA
P _{TOT}	Power dissipation		100	mW
T _{stg}	Storage temperature	-60	+125	°C
TJ	Junction temperature		+125	°C
V _{ESD}	Electrostatic discharge voltage (HBM JS-001-2017)		+/- 2000	V

Table 18: Limiting values² and ESD protection³

12.2 DC characteristics

Conditions: V_{DD} = 3V, Tamb = 25°C, if not stated otherwise

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Positive supply voltage		1.8		4.5	V
		Idle state, oscillator disabled		50		nA
		Idle state, oscillator enabled,		720		nA
		MI = periodic or permanent				
		Active current during				
		measurement				
		CR = 1, 2		7.5		μA
		CR = 3, 4		11		μA
		Average current (switch mode),				
		2 measurements/s, NoF = '1'				
		2 sensors		730		nA
		1 sensor		725		nA
		Average current (switch mode),				
		2 measurements/s, CF = low				
		2 sensors		740		nA
		1 sensor		735		nA
I _{DD}	Operating current	Average current (switch mode),				
		2 measurements/s, CF = high				
		2 sensors		770		nA
		1 sensor		750		nA
		Average current (switch mode),				
		32 measurements/s, NoF = '1'				
		2 sensors		820		nA
		1 sensor		800		nA
		Average current (switch mode),				
		32 measurements/s, CF = 10 w		0.50		
		2 sensors		950		nA
		1 Sensor		860		<u>n</u> A
		Average current (switch mode),				
		32 measurements/s, CF = high		1 5		
		∠ sensors		1.5		μΑ
		1 sensor		1.1		μΑ

² These are stress ratings only. Stress above one or more of the limiting values may cause permanent damage to the device. Operation of the device at these or at any other conditions above those given in the characteristics section of the specification in not implied. Exposure to limiting values for extended periods may affect device reliability.

³ Inputs and outputs are protected against electrostatic discharge during normal handling. However to be totally safe, it is advisable to undertake precautions appropriate to handling MOS devices.

		Average current (switch mode),				
		Permanent, NoF = '1'				
		2 sensors		12		μA
		1 sensor		17		μA
		Average current (switch mode),				
		2 sensors		8		UΑ
		1 sensor		9.5		μA
		Average current (switch mode),				
		Permanent, CF = high				
		2 sensors		6.5		μA
		1 sensor		7		μA
I _{OTP}	OTP read-out current			30		μA
Sensor ca	pacitance			1	1	1
CS _{typ}	Typical range of	CR = 1	0		400	fF
	sensor capacitance		100			
		UR = 2	400		800	t⊢
		CR = 3	800		1200	t⊦ (=
		CR = 4	1200	1.0	1600	t⊦ (E
CU	ADC resolution		1.52	1.6	1.68	t⊦
OTP mem	ory programming characte			40.0	40.4	11
V _{PROG}		Device in OTP programming	9.9	10.0	10.1	V
Digital inpu		mode				
V	Input low level		Vaa		0.3\/	V
V IL	for digital inputs		▼ SS		0.00000	v
VIII	Input high level		0 7Vpp		Vpp	V
• 10	for digital inputs		000		• 00	
Digital out	puts (OUT1, OUT2)					
<u> </u>	Output low level	$I_{OUT} = 2mA$	Vss		0.2Vpp	V
V _{OL}	for digital outputs		00		00	
V _{OH}	Output high level	I _{OUT} = -2mA, DRV = '0'	0.8V _{DD}		V _{DD}	V
	for digital outputs					
I _{OUT}	Output current	DRV = '0'	-5		5	mA
Analog inp	outs (SB1, SB2)					
V _{AI}			V _{SS}		V _{DD}	V
ľC						
interface						
pins						<u>,</u>
V _{O:SDA}	Output low level on SDA	$I_{SDA} = 2mA$	V _{SS}		0.2V _{DD}	V
Б	Pull-up resistor on			175		kΩ
K _{SDA}	SDA					_
Б	Pull-up resistor on			175		kΩ
RSCL	SCL					
Temperate	ure range					
T _{amb}	Operating temperature		-40	25	85	°C
	range					

Table 19: DC characteristics

12.3 AC characteristics

Conditions: V_{DD} = 3V, T_{amb} = 25°C, if not stated otherwise

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{osc}	Oscillator frequency	MI[1:0] = '01'	30.5	32.8	35.0	kHz
t _{meas:prox}	Measuring time for single	No noise filter		0.06		ms
	measurement cycle in	CE = low		0.24		ms
	switch mode			0.21		mo
				0.90		ms
t _{meas:meter}	Measuring time for single	2 sensors		0.98		ms
	measurement sequence	1 sensor		0.49		ms
	in meter mode					
т _{мі}	Measuring frequency in	$M[1:0] = 10^{\circ}$		2		HZ
	switch mode	$M[[1:0] = 01^{\circ}$		32		HZ
		M [1:0] = 1 , NOF = 1		2.0		L1 I=
		1 sensor		3.0		
		$MI[1:0] = (11)^2 CE = (0)^2$		0.0		KIIZ
		$N_0F = 0$				
		2 sensors		10		kH7
		1 sensor		1.0		kHz
		MI[1:0] = '11'. CF = '1'.		1.0		
		NoF = '0'				
		2 sensors		0.25		kHz
		1 sensor		0.5		kHz
t _{OTP}	OTP read-out time			0.06		ms
t _{TRG}	External single trigger		1	50	100	μs
t _{NOF}	Delay of polarity change	Polarity change of pin			2	ms
		TRIGGER '0' to '1' or '1' to '0'				
OTP prog	ramming characteristics					
t _{PROG}	OTP programming pulse		95	100	105	ms
t _{P:pre}	Time between end of		0.1			ms
-	OTP programming					
	command and start of					
	OTP programming pulse					
t _{P:post}	Time between end of		0.1			ms
	OTP programming pulse					
	and start of next I-C					
120 :	command					
	ace characteristics (SDA, SC	L)	_	[100	[
ι _{sp}	Pulse width of spikes that		0		100	ns
f			0		100	
ISCL	Hold time (repeated)		4.0		100	
^L HD:STA	START condition		4.0			μs
tourse	Setup time (repeated)		47			116
ISU:STA	START condition		ч .1			μo
t. our	LOW period of the SCI		47			119
LOW	clock		4.7			μο
turou	HIGH period of the SCI		40			115
HIGH	clock					р но
t _{HD'DAT}	Data hold time		50			us
	Data setup time		250			ns
t _r	Rise time SDA. SCL				1	us
t _f	Fall time SDA. SCL				0.3	us
tsuisto	Setup time for STOP		4.0			us
-00.010	condition		-			
t _{BUF}	Bus free time between		4.7		İ	μs
	START and STOP					

Preliminary

I ² C bus pulse on SDA line	3	μs
--	---	----

Table 20: AC characteristics

13 Production note

13.1 QFN16 package outline

13.2 PCB design

Symbol	Value	Tolerance	Unit
Р	0.5	±0.03	mm
Ax	3.8	±0.03	mm
Ау	3.8	±0.03	mm
Bx	2.1	±0.03	mm
Ву	2.1	±0.03	mm
С	0.85	±0.03	mm
D	0.3	±0.03	mm

Table 21: QFN16 footprint dimensions

Solder mask opening for PCB area

13.3 Assembly instructions

Symbol	Value	Tolerance	Unit
P	0.5	±0.03	mm
Ax	3.64	±0.03	mm
Ay	3.64	±0.03	mm
Bx	2.28	±0.03	mm
By	2.28	±0.03	mm
С	0.68	±0.03	mm
D	0.24	±0.03	mm

Table 22: Stencil dimensions

The recommendations in the table above are based on a stencil thickness of 0.10 to 0.13mm and the PCB footprint size given in section 13.2. The stencil dimensions are 80% of the footprint size. Both the stencil thickness and dimensions are recommendations. The stencil thickness and dimensions may have to be adjusted to take into account other components on the board. For example, components with leads may typically require a little more solder to compensate for co-planarity problems. Generally speaking increasing the stencil thickness and/or dimensions result in more solder being deposited and increases the risk of bridging. Decreasing the stencil thickness and/or dimensions results in less solder being deposited and increases the risk of insufficient solder for a good solder joint.

13.4 Recommended reflow parameters

The reflow profile is dependent on many different parameters. The profile here is given as a guide. It may be necessary to adjust the profile slightly depending on the solder flux and equipment used.

14 Legal disclaimer

This product is not designed for use in life support appliances or systems where malfunction of these parts can reasonably be expected to result in personal injury. Customers using or selling this product for use in such appliances do so at their own risk and agrees to defend, indemnify and hold harmless Microdul AG from all claims, expenses, liabilities, and/or damages resulting from such use of the product.

15 Contents

1	Ger	neral Description	1
2	Applications 1		
3	Typical application1		
4	Features		
5	5 Pinout		
6	3 Ordering Information		
7	' Pin description		
8	Description		
	8.1	Basic functionality	2
9	I ² C	interface	8
	9.1	Supported I ² C protocol	8
	9.2	I ² C command table	9
	9.3	Register description	9
	9.4	Interface timing	12
	9.5	Interrupt over I ² C bus	12
10 OTP memory			12
	10.1	RAM or ROM operation	12
	10.2	OTP programming	13
11	App	blication information	14
	11.1	Basic sensor design	14
12 Electrical Characteristics 15			
	12.1	Limiting values and ESD protection	15
	12.2	DC characteristics	15
	12.3	AC characteristics	17
13 Production note1			18
	13.1	QFN16 package outline	18
	13.2	PCB design	18
	13.3	Assembly instructions	19
	13.4	Recommended reflow parameters	20
14	l Leg	al disclaimer	21
15	5 Cor	ntents	21