

Over Three Decades of Quality Through Innovation

LSK489

LOW NOISE LOW CAPACITANCE MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER

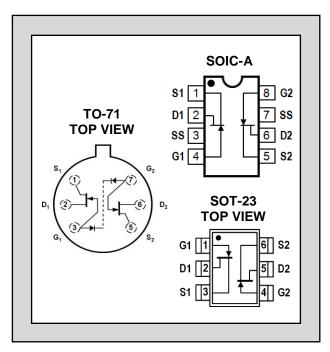
FEATURES	
ULTRA LOW NOISE	$e_n = 1.8 \text{nV}/\sqrt{\text{Hz}}$
LOW INPUT CAPACITANCE	Ciss = 4pF

Features

- Reduced Noise due to process improvement
- Monolithic Design
- High slew rate
- Low offset/drift voltage
- Low gate leakage lgss & lg
- High CMRR 102 dB

Benefits

- Tight differential voltage match vs. current
- Improved op amp speed settling time accuracy
- Minimum Input Error trimming error voltage
- Lower intermodulation distortion


Applications

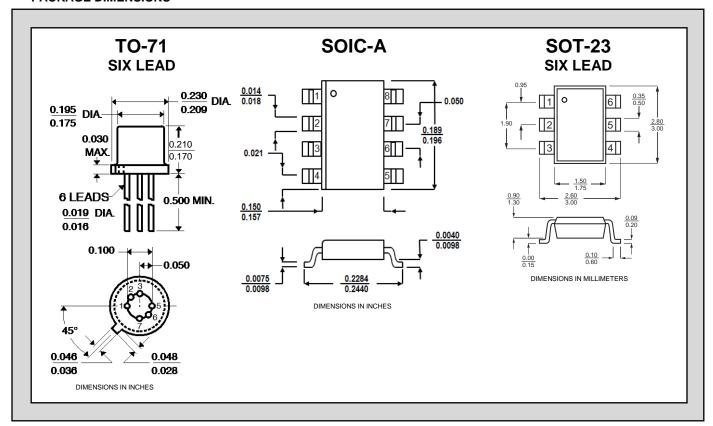
- Wide band differential Amps
- High speed temperature compensated single ended input amplifier amps
- High speed comparators
- Impedance Converters

Description

The LSK 489 series of high performance monolithic dual JFETs features extremely low noise, tight offset voltage and low drift over temperature specifications, and is targeted for use in a wide range or precision instrumentation applications. This series has a wide selection of offset and drift specifications. The SST series SO-8 package provided ease of manufacturing and the symmetrical pinout prevents improper orientation. The SO-8 package is available with tape and reel options for compatibility with automatic assembly methods. (See packaging data)

ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +150°C				
Maximum Power Dissipation, TA = 25°C					
Continuous Power Dissipation, per side ⁴	300mW				
Power Dissipation, total ⁵	500mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)} = 10mA$				
Maximum Voltages					
Gate to Source	$V_{GSO} = 60V$				
Gate to Drain	V _{GDO} = 60V				

^{*} For equivalent single version, see LSK189

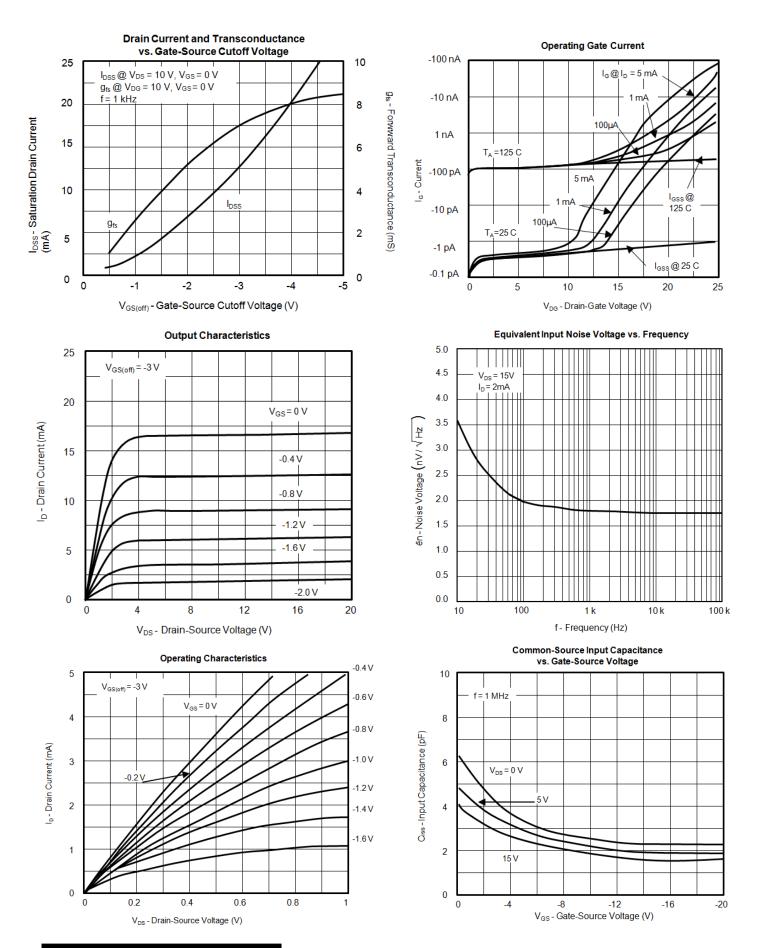

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$\left V_{GS1}-V_{GS2}\right $	Differential Gate to Source Cutoff Voltage			20	mV	$V_{DS} = 10V, I_{D} = 1mA$
	Gate to Source Saturation Current Ratio	0.9		1.0		V _{DS} = 10V, V _{GS} = 0V
CMRR	COMMON MODE REJECTION RATIO -20 $\log \Delta V_{GS1-2}/\Delta V_{DS} $	95	102		dB	$V_{DS} = 10V \text{ to } 20V, I_D = 200\mu\text{A}$

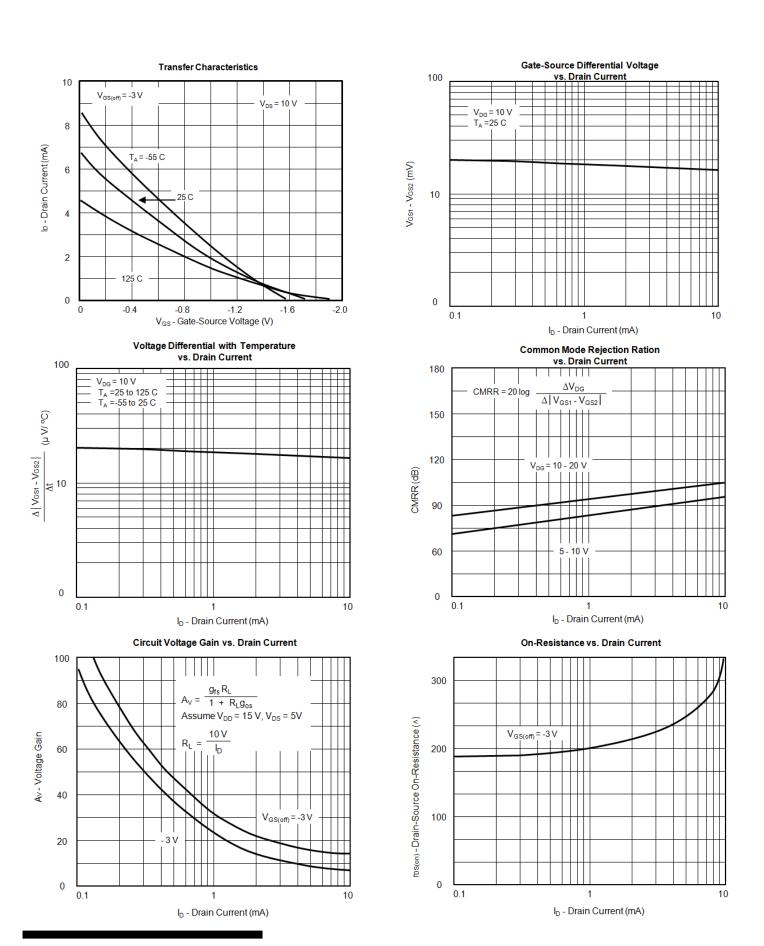
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
e n	Noise Voltage		2.0		nV/√Hz	$V_{DS} = 15V$, $I_{D} = 2.0$ mA, $f = 1$ kHz, NBW = 1Hz
en	Noise Voltage		3.5		nV/√Hz	$V_{DS} = 15V$, $I_{D} = 2.0$ mA, $f = 10$ Hz, NBW = 1Hz
Ciss	Common Source Input Capacitance		4	8	pF	
C _{RSS}	Common Source Reverse Transfer Capacitance			3	pF	$V_{DS} = 15V$, $I_{D} = 500\mu A$, $f = 1MHz$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

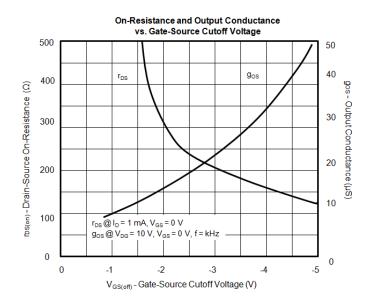
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-60			V	$V_{DS} = 0$, $I_D = -1nA$
V(BR)G1 - G2	Gate to Gate Breakdown Voltage	±30	±45		V	I _G = ±1µA, I _D =I _S =0 A (Open Circuit)
V _{GS(OFF)}	Gate to Source Pinch-off Voltage	-1.5		-3.5	V	V _{DS} = 15V, I _D = 1nA
V_{GS}	Gate to Source Operating Voltage	-0.5		-3.5	V	$V_{DS} = 15V, I_D = 500\mu A$
I _{DSS} ²	Drain to Source Saturation Current	2.5	5	15	mA	$V_{DG} = 15V$, $V_{GS} = 0$
1-	Gate Operating Current		-2	-25	pА	$V_{DG} = 15V, I_D = 200\mu A$
l _G			-0.8	-10	nA	T _A = 125°C
Igss	Gate to Source Leakage Current			-100	pА	$V_{DG} = -15V, V_{DS} = 0$
G _{fs}	Full Conductance Transconductance	1500			μS	$V_{DG} = 15V, V_{GS} = 0, f = 1kHz$
Gfs	Transconductance	1000	1500		μS	$V_{DG} = 15V, I_D = 500\mu A$
Gos	Full Output Conductance			40	μS	$V_{DG} = 15V$, $V_{GS} = 0$
Gos	Output Conductance		1.8	2.7	μS	$V_{DG} = 15V, I_D = 200\mu A$
NF	Noise Figure			0.5	dB	$V_{DS} = 15V, V_{GS} = 0, R_{G} = 10M\Omega,$ f = 100Hz, NBW = 6Hz

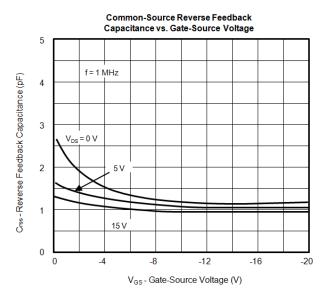


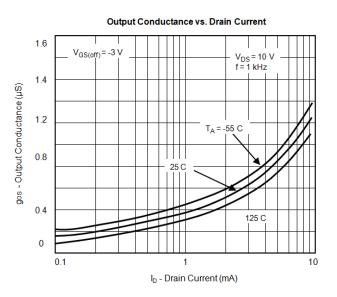
NOTES

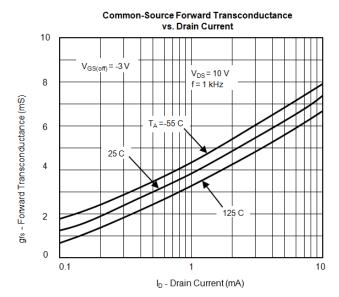

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse width ≤2_{ms}
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Derate 2.4 mW/°C above 25°C.
- 5. Derate 4 mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.


Typical Characteristics




Typical Characteristics (Cont'd)



Typical Characteristics (Cont'd)

Linear Integrated Systems (LIS), established in 1987, is third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company Founder John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.