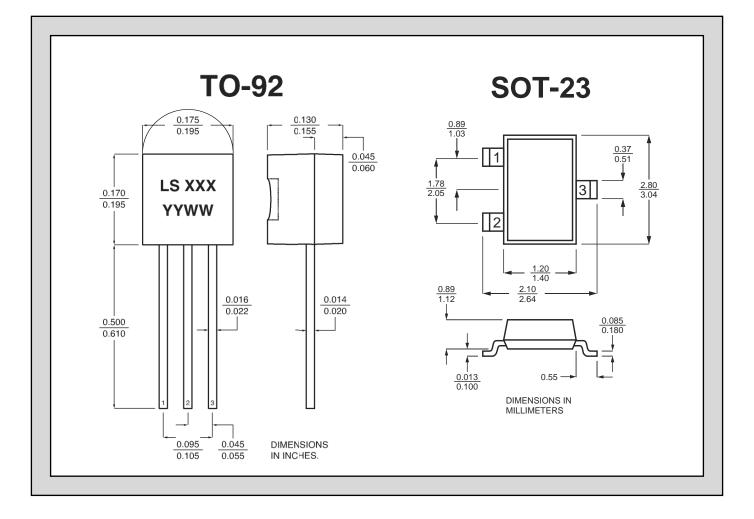

LINEAR SYSTEMS

Over Three Decades of Quality Through Innovation

LSK170

ULTRA LOW NOISE SINGLE N-CHANNEL JFET AMPLIFIER


FEATURES					
ULTRA LOW NOISE (f=1kHz)	e _n = 0.9NV/√HZ				
HIGH BREAKDOWN VOLTAGE	BV _{GSS} = 40V max				
HIGH GAIN	$G_{fs} = 22mS (typ)$				
HIGH INPUT IMPEDANCE	$I_G > 20G\Omega$				
LOW CAPACITANCE	22pF max				
IMPROVED SECOND SOURCE REPLACEMENT FOR 2SK170					
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150 °C				
Operating Junction Temperature	-55 to +135 °C				
Maximum Power Dissipation					
Continuous Power Dissipation@+25°C	400mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)}=10mA$				
Maximum Voltages					
Gate to Source	$V_{GSS} = 40V$				
Gate to Drain	$V_{GDS} = 40V$				

*For equivalent monolithic dual, see LSK389 family.

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC			TYP	MAX	UNITS	CONDITIONS	
BV _{GSS}	Gate to Source Breakdown Voltage		-40			V	$V_{DS} = 0V, I_{D} = 100 \mu A$	
$V_{GS(OFF)}$	Gate to Source Pinch-off Voltage		-0.2		-2	V	$V_{DS} = 10V, I_{D} = 1nA$	
V _{GS}	Gate to Source Operating Voltage			0.5		V	$V_{DS} = 10V, I_D = 1mA$	
loss ²	Drain to Source Saturation Current	LSK170A	2.6		6.5	mA	$V_{DS} = 10V, \ V_{GS} = 0$	
		LSK170B	6		12			
		LSK170C	10		20			
		LSK170D	18		30			
lg	Gate Operating Current				-0.5	nA	$V_{DG} = 10V, I_D = 1mA$	
I _{GSS}	Gate to Source Leakage Current				-1	nA	$V_{GS} = -10V, \ V_{DS} = 0V$	
G _{fS}	Full Conduction Transconductance			22		mS	$V_{DS} = 10V, V_{GS} = 0, f = 1kHz$	
G _{fS}	Typical Conduction Transconductance			10		mS	$V_{DS} = 15V$, $I_D = 1mA$	
en	Noise Voltage			1.9		nV/√Hz	$V_{DS} = 10V$, $I_D = 2mA$, $f = 1kHz$, NBW=1Hz	
en	Noise Voltage			4		nV/√Hz	$V_{DS} = 10V$, $I_D = 2mA$, $f = 10$ Hz, NBW=1Hz	
Ciss	Common Source Input Capacitance			20		pF		
Crss	Common Source Reverse Transfer Cap.			5		pF	$V_{DS} = 15V, I_D = 100\mu A, f = 1MHz$	

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW \leq 300µs, Duty Cycle \leq 3%

3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS), established in 1987, is a third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company Founder John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.

Linear Integrated Systems