

Over Three Decades of Quality Through Innovation

LS5301/PF5301/ SST5301

VERY HIGH INPUT IMPEDANCE N-CHANNEL JFET AMPLIFIER

Features					
Replacement for LF5301, PF5301					
High Input Impedance	$I_G > 1 G\Omega$				
High Gain	$g_{fs} > 70 \mu S$				
Absolute Maximum Ratings ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures (°C)					
Storage Temperature	-55 to 150°C				
Operating Junction Temperature	-55 to 135°C				
Maximum Power Dissipation @TA = 25°C	300mW				
Derate LS5301	2.0mW/°C				
Derate PF & SST5301	2.8mW/°C				
Maximum Forward Current	50mA				
Maximum Gate to Drain Voltage	-30V				
Maximum Gate to Source Voltage	-30V				

Static Electrical Characteristics @ TA = 25°C (unless otherwise stated)

Symbol	Characteristic			TYP	Max	Unit	Conditions	
BV _{GSS}	Gate to Source Breakdown Voltage		-30			V	$V_{DS} = 0V$, $I_D = -1\mu A$	
V _{GS(off)}	Gate to Source Cutoff Voltage		-0.6		-3.0	V	$V_{DS} = 10V, I_{D} = 1nA$	
I _{GSS}	Gate Leakage Current	LS5301			-1	pА	V _{DS} = 15V, V _{GS} = 0V	
		PF5301			-5			
		SST5301			-10			
I _G	Gate Operating Current			-0.04			$V_{DG} = 6V, I_D = 5\mu A$	
I _{DSS}	Drain to Source Saturation Current		30		500	μΑ	$V_{DS} = 10V$, $V_{GS} = 0V$	
g fs	Forward Transconductance		70		500	μS	$V_{DS} = 10V, V_{GS} = 0V, f = 1kHz$	
C _{iss}	Input Capacitance				3	ņE	$V_{DS} = 10V$, $V_{GS} = 0V$, $f = 1MHz$	
Crss	Reverse Transfer Capacitance	9			1.5	pF	$V_{DS} = 10V$, $V_{GS} = 0V$, $I = 11V_{IDZ}$	
en	Equivalent Noise Voltage			45	150	nV/√Hz	$V_{DG} = 10V$, $I_D = 50\mu A$, $f = 100Hz$	

NOTES

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Derate PF series 2.8mW/° C when TA>25° C. Derate LS series 2.0mW°C when TA>25° C
- 3. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicated electrical polarity only.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS), established in 1987, is a third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company Founder John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.