
IGBT Chip in NPT-technology

Features:

- 1700V NPT technology
- 280µm chip
- short circuit prove
- positive temperature coefficient
- easy paralleling
- Qualified according to JEDEC for target applications

Recommended for:

- chip only
- Applications:
- drives
- unves

Chip Type	V _{CE}	I _{Cn}	Die Size	Package
SIGC104T170R2C	1700V	50A	10.12 x 10.18 mm ²	sawn on foil

Mechanical Parameters

	CI 3	10.12 × 10.18			
Die size		10.12 x 10.18			
Emitter pad size (incl.	gate pad)	See chip drawing			
Gate pad size		0.757 x 1.48			
Area total		103			
Thickness		280	μm		
Wafer size		150	mm		
Max.possible chips pe	er wafer	130	130		
Passivation frontside		Photoimide			
Pad metal		3200 nm AlSiCu			
Backside metal		Ni Ag –system			
Die bond		Electrically conductive epoxy glue and soft solder			
Wire bond		Al, <500µm			
Reject ink dot size		Ø 0.65mm ; max 1.2mm			
Otana an incorrect	for original and sealed MBB bags	Ambient atmosphere air, Temperature 17°C – 25° < 6 month			
Storage environment	for open MBB bags	Acc. to IEC62258-3: Atmosphere >99% Nitrogen or inert gas Humidity <25%RH, Temperature 17°C – 25°C, < 6 month			

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-Emitter voltage, T_{vj} =25 °C	V _{CE}	1700	V
DC collector current, limited by $T_{vj max}$	I _C	1)	А
Pulsed collector current, t_p limited by $T_{vj max}^{2}$	I _{c,puls}	150	А
Gate emitter voltage	V _{GE}	±20	V
Operating junction and storage temperature	$T_{\rm vj,} T_{stg}$	-55 +150	°C
Short circuit data ²⁾³⁾ $V_{GE} = 15V$, $V_{CC} = 1000V$, $T_{vj} = 150^{\circ}C$	t _{SC}	10	μs

¹⁾ depending on thermal properties of assembly

²) not subject to production test - verified by design/characterization

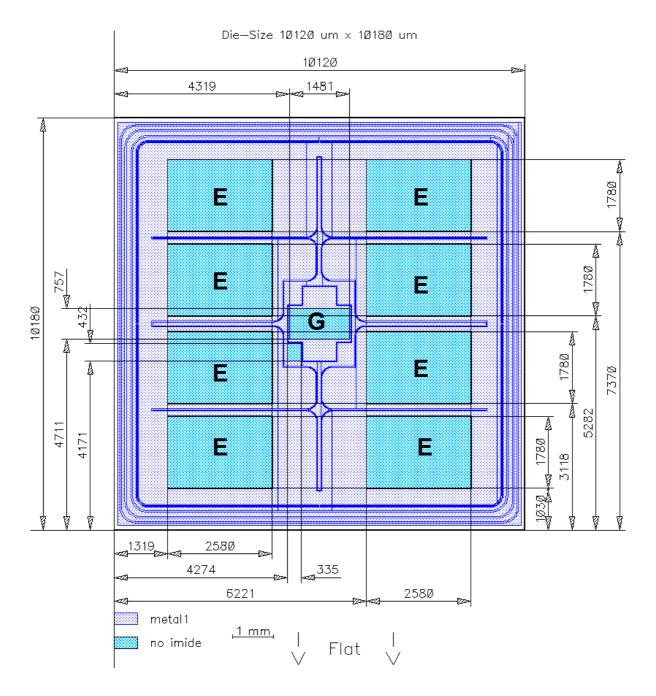
³⁾ allowed number of short circuits: <1000; time between short circuits: >1s.

Static Characteristics (tested on wafer), T_{vj} =25 °C

Parameter	Symbol	Conditions	Value			Unit
	Gymbol		min.	typ.	max.	
Collector-Emitter breakdown voltage	V _{(BR)CES}	<i>V</i> _{GE} =0V , <i>I</i> _C =2 mA	1700			
Collector-Emitter saturation voltage	V _{CEsat}	V _{GE} =15V, <i>I</i> _C =50A	2.18	2.6	2.92	V
Gate-Emitter threshold voltage	V _{GE(th)}	$I_{\rm C}$ =2.2mA , $V_{\rm GE}$ = $V_{\rm CE}$	4.6	5.5	6.4	
Zero gate voltage collector current	I _{CES}	V _{CE} =1700V , V _{GE} =0V			2	μA
Gate-Emitter leakage current	I _{GES}	V_{CE} =0V , V_{GE} =20V			300	nA
Integrated gate resistor	r _G			5		Ω

Electrical Characteristics (not subject to production test - verified by design / characterization)

Peremeter	Symbol	Conditions	Value			11
Parameter	Symbol		min.	typ.	max.	Unit
Collector-Emitter saturation voltage	V _{CEsat}	V _{GE} =15V, <i>I</i> _C =50A, <i>T</i> _{vj} =125 °C		3.1		V
Input capacitance	C _{ies}	V _{CE} =25V, V _{GE} =0V, <i>f</i> =1MHz		7000		pF
Reverse transfer capacitance	Cres	$T_{\rm vj}$ =25 °C		300		


Further Electrical Characteristic

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

This chip data sheet refers to the device data sheet	FZ800R17KF6 Rev. 2.1	04.04.2013
--	----------------------	------------

Chip Drawing

Description

AQL 0,65 for visual inspection according to failure catalogue

Electrostatic Discharge Sensitive Device according to MIL-STD 883

Revision History

Version	Subjects (major changes since last revision)	Date
2.2	Operating junction and storage temperature	15.05.2013

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.