
CPWR-0600S001 – Silicon Carbide Schottky Diode Chip

Features

Chip Outline

 $V_{RRM} = 600 V$ $I_{F(AVG)} = 1 A$ $Q_{c} = 3.3 nC$

- 600-Volt Schottky Rectifier
- Zero Reverse Recovery
- Zero Forward Recovery
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_F

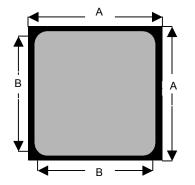
Part Number	Anode	Cathode	Package	Marking
CPWR-0600S001B AI		Ni/Ag	Sawn on Foil	Wafer # on Foil

Maximum Ratings

Symbol	Parameter		Unit	Test Conditions	Note
V _{RRM}	Repetitive Peak Reverse Voltage	600	V		
V _{RSM}	Surge Peak Reverse Voltage	600	V		
V _{DC}	DC Blocking Voltage	600	V		
I _{F(AVG)}	Average Forward Current	1	А	T _j =175°C	
I _{FRM}	Repetitive Peak Forward Surge Current	5	А	$T_c = 25^{\circ}C$, $t_p = 8.3$ ms, Half Sine Wave	1
I _{FSM}	Non-Repetitive Peak Forward Surge Current	20	А	$T_c=25^{\circ}C$, $t_p=10 \ \mu$ s, Pulse	1
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +175	°C		

Electrical Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.6 2.0	1.8 2.4	V	$I_{F} = 1 A T_{J} = 25^{\circ}C$ $I_{F} = 1 A T_{J} = 175^{\circ}C$	
I _R	Reverse Current	2 20 40	5 100 500	μΑ	$V_{R} = 450 V T_{J} = 25^{\circ}C$ $V_{R} = 600 V T_{J} = 25^{\circ}C$ $V_{R} = 600 V T_{J} = 150^{\circ}C$	
Q _c	Total Capacitive Charge	3.3		nC	$V_{R} = 500 \text{ V}, I_{F} = 1 \text{ A}$ $di/dt = 500 \text{ A}/\mu\text{s}$ $T_{J} = 25^{\circ}\text{C}$	
С	Total Capacitance	80 11 8.5		pF	$ \begin{array}{l} V_{_R} = 0 \ V, \ T_{_J} = 25^{\circ}C, \ f = 1 \ MHz \\ V_{_R} = 200 \ V, \ T_{_J} = 25^{\circ}C, \ f = 1 \ MHz \\ V_{_R} = 400 \ V, \ T_{_J} = 25^{\circ}C, \ f = 1 \ MHz \end{array} $	


Note: 1. Assumes θ JC Thermal Resistance of 1.8°C/W or less

Mechanical Parameters

Parameter	Тур.	Unit
Die Size	.84 x .84	mm
Anode Pad Size	0.70 × 0.70	mm
Anode Pad Opening	0.58 x 0.0.58	mm
Thickness	377 ± 10%	μm
Wafer Size	100	mm
Anode Metalization (Al)	4	μm
Cathode Metalization (Ni/Ag)	0.8	μm
Frontside Passivation	Polyimide	

Chip Dimensions

symbol	dimension				
	mm	inch			
А	0.84	0.0331			
В	0.70	0.0276			

Part Number	Anode	Cathode	Package	Marking
CPWR-0600S001B	AI	Ni/Ag	Sawn on Foil	Wafer # on Foil

The die-on-tape method of delivering these SiC die may be considered a means of temporary storage only. Due to an increase in adhesion over time, die stored for an extended period may affix too strongly to the tape. These die should be stored in a temperature-controlled nitrogen dry box soon after receipt. Cree will further recommend that all die be removed from tape to a waffle pack, to a similar storage medium, or used in production within 2 – 3 weeks of delivery to assure 100% release of all die without issues.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.