

CPM2-1200-0160A Silicon Carbide Power MOSFET C2M[™] MOSFET Technology

N-Channel Enhancement Mode

Features

- C2M SiC MOSFET technlogy
- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitances
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant

Benefits

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency

Applications

- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC Converters
- LED Lighting Power Supplies

Part Number	Die Size (mm)		
CPM2-1200-0160A	2.39 × 2.63		

G

(1)

Maximum	Ratings	$(T_{c} = 25 °C)$	unless	otherwise s	specified)
---------	---------	-------------------	--------	-------------	------------

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain - Source Voltage	1200	V	V_{GS} = 0 V, I_{D} = 100 μA	
V_{GSmax}	Gate - Source Voltage	-10/+25	V	Absolute maximum values	
V_{GSop}	Gate - Source Voltage	-5/+20	V	Recommended operational values	
I _D	In Continuous Drain Current	18	A	$V_{GS} = 20 \text{ V}, \text{ T}_{C} = 25^{\circ}\text{C}$	
LD		13.8		$V_{GS} = 20 \text{ V}, \text{ T}_{C} = 100^{\circ}\text{C}$	
$\mathbf{I}_{D(pulse)}$	Pulsed Drain Current	40	А	Pulse width t_p limited by T_{jmax}	
T_{j} , T_{stg}	Operating Junction and Storage Temperature	-55 to +175	°C		
TL	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	
T _{Proc}	Maximum Processing Temperature	325	°C	10 min. maximum	

 V_{DS}
 1200 V

 I_D@25°C
 18 A

 R_{DS(on)}
 160 mΩ

D (2)

(3)

Chip Outline

CPM2-1200-0160A Rev. 1, 09-2020

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
$V_{(\text{BR})\text{DSS}}$	Drain-Source Breakdown Voltage	1200			V	$V_{GS} = 0 V, I_{D} = 100 \mu A$	
N/	Cate Threehold Voltage	2.0	3.0	4.0	V	V_{DS} = V_{GS} , I_{DS} = 2.5 mA	
$V_{GS(th)}$	Gate Threshold Voltage		2.25		V	$V_{DS} = V_{GS}, I_{DS} = 2.5 \text{ mA}, T_{J} = 175^{\circ}\text{C}$	Fig. 11
\mathbf{I}_{DSS}	Zero Gate Voltage Drain Current		1	100	μA	$V_{DS} = 1200 V, V_{GS} = 0 V$	
\mathbf{I}_{GSS}	Gate-Source Leakage Current			250	nA	V_{GS} = 20 V, V_{DS} = 0 V	
D	Drain-Source On-State Resistance		160	196	mΩ	V_{GS} = 20 V, I_{D} = 10 A	Fig. 4, 5, 6
$R_{DS(on)}$			306		11132	V_{GS} = 20 V, I_{D} = 10A, T_{J} = 175°C	
a Transconductanco	Transconductance		3.8		S	$V_{\text{DS}}\text{=}$ 20 V, $I_{\text{DS}}\text{=}$ 10 A	Fig. 7
g _{fs}			5.34			V_{DS} = 20 V, I_{DS} = 10 A, T_{J} = 150°C	
C_{iss}	Input Capacitance		606			$V_{GS} = 0 V$	Fig. 17, 18
C_{oss}	Output Capacitance		55		pF	$V_{\rm DS} = 1000 \rm V$	
C_{rss}	Reverse Transfer Capacitance		5			f = 1 MHz	
E _{oss}	Coss Stored Energy		28		μJ	V _{AC} = 25 mV	Fig. 16
$R_{G(int)}$	Internal Gate Resistance		6.8		Ω	$f = 1 MHz$, $V_{AC} = 25 mV$	
Q_{gs}	Gate to Source Charge		11			V _{DS} = 800 V, V _{GS} = -5/20 V	Fig. 12
Q_{gd}	Gate to Drain Charge		17		nC	$I_D = 10 A$	
Qg	Total Gate Charge		40		Per IEC60747-8-4 pg 21		

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Reverse Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
N	Diada Famuard Valtage	3.9		V	$V_{GS} = -5 V, I_F = 5 A$	Fig. 8,9,
V _{SD}	Diode Forward Voltage	3.4		V	$V_{GS} = -5V, I_F = 5 A, T_J = 175 \text{ °C}$	10
Is	Continuous Diode Forward Current		30	А	$T_c = 25^{\circ}C$	
t _{rr}	Reverse Recovery Time	20		ns		
Qrr	Reverse Recovery Charge	192		nC	$V_{GS} = -5 V, I_{SD} = 10 A, V_{R} = 800 V$ dif/dt = 2400 A/µs	
I _{rrm}	Peak Reverse Recovery Current	16		А		

Typical Performance

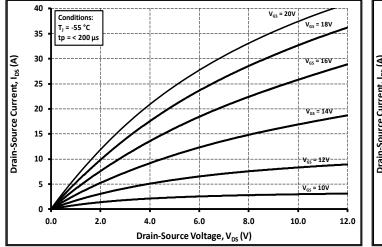


Figure 1. Output Characteristics $T_J = -55 \text{ °C}$

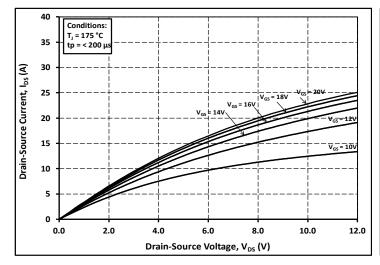
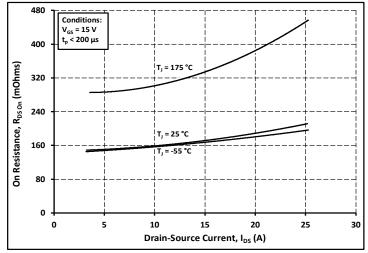
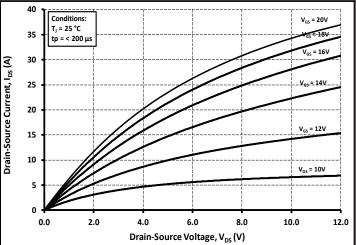
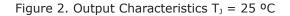





Figure 3. Output Characteristics T₁ = 175 °C

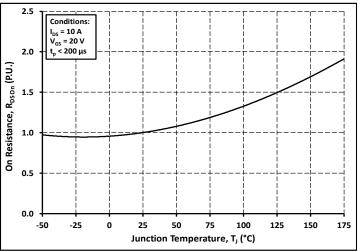
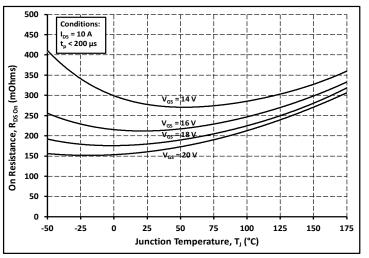



Figure 4. Normalized On-Resistance vs. Temperature

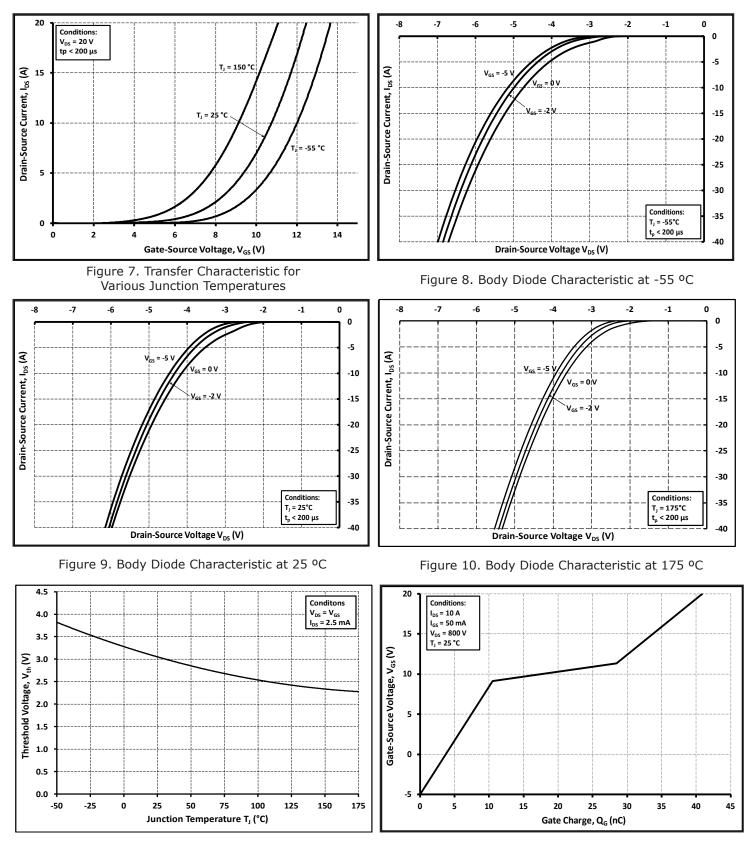


Figure 11. Threshold Voltage vs. Temperature

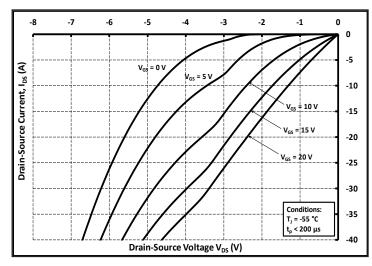


Figure 13. 3rd Quadrant Characteristic at -55 °C

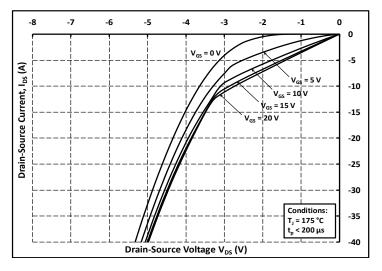
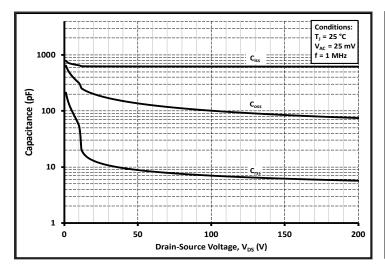
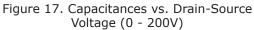




Figure 15. 3rd Quadrant Characteristic at 175 °C

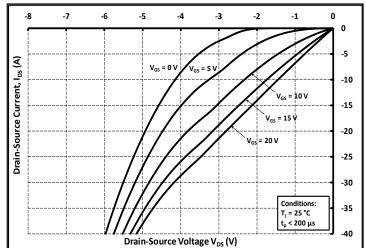


Figure 14. 3rd Quadrant Characteristic at 25 °C

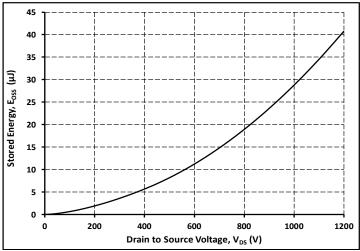
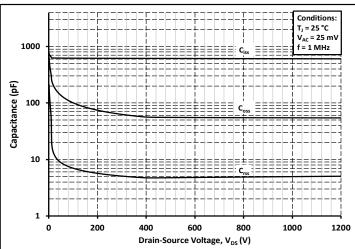
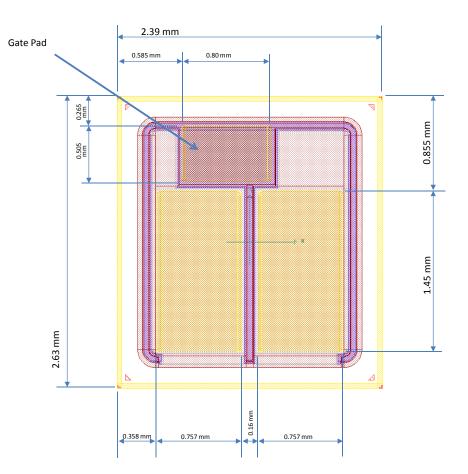


Figure 16. Output Capacitor Stored Energy




Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V)

Mechanical Parameters

Parameter	Typical Value	Unit
Die Dimensions (L x W)	2.39 × 2.63	mm
Exposed Source Pad Metal Dimensions (LxW) Each	0.757 × 1.45	mm
Gate Pad Dimensions (L x W)	0.80 × 0.505	mm
Die Thickness	180 ± 20	μm
Top Side Source metallization (AI)	4	μm
Top Side Gate metallization (AI)	4	μm
Bottom Drain metallization (Ni/Au)	0.8 / 0.6	μm

Chip Dimensions

Revision History

Revision Number	Date of Change	Brief Summary
1	09/11/2020	Initial release.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power

Copyright © 2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc.

7

Notes

• RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

• **REACh Compliance**

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, air traffic control systems.

Related Links

- C2M PSPICE Models: www.cree.com/power
- SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power
- Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power

Copyright © 2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power