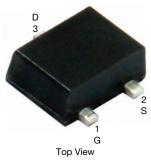
Vishay Siliconix

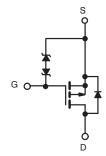
Si1013CX

RoHS


COMPLIANT

HALOGEN

PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)	Q _g (TYP.) (nC)			
	0.760 at V _{GS} = -4.5 V	-0.45				
-20	1.040 at V _{GS} = -2.5 V	-0.40	1			
	1.500 at V _{GS} = -1.8 V	-0.32				



FEATURES

- TrenchFET[®] power MOSFET
- 100 % Rg tested
- Typical ESD protection: 1000 V (HBM)
- Fast switching speed
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Load / power switch for portable devices
- Drivers: relays, solenoids, displays
- Battery operated systems

P-Channel MOSFET

Marking Code: 6

Ordering Information:

Si1013CX-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage	V _{DS}	-20	M		
Gate-Source Voltage		V _{GS}	± 8	V	
Continuous Dusin Current (T. 150 °C)	T _A = 25 °C		-0.45 ^{b, c}		
Continuous Drain Current (T _J = 150 °C)	T _A = 70 °C	Ι _D	-0.36 ^{b, c}	•	
Pulsed Drain Current (t = 300 µs)		I _{DM}	-1.5	A	
Continuous Source-Drain Diode Current	T _A = 25 °C	ا _S	-0.16 ^{b, c}		
Maximum Bower Dissinction	T _A = 25 °C	р	0.19 ^{b, c}	W	
Maximum Power Dissipation	T _A = 70 °C	P _D	0.12 ^{b, c}	7 ^{vv}	
Operating Junction and Storage Temperature Rang	T _J , T _{stg}	-55 to +150	°C		

THERMAL RESISTANCE RATINGS						
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT	
Maximum Junction-to-Ambient ^{a, b}	t ≤ 5 s	R _{thJA}	440	530	°C/W	
Maximum Junction-to-Ambient 4, 2	Steady State		540	650	C/W	

Notes

a. Maximum under steady state conditions is 650 °C/W.

b. Surface mounted on 1" x 1" FR4 board.

c. t = 5 s.

1

Vishay Siliconix

Si1013CX

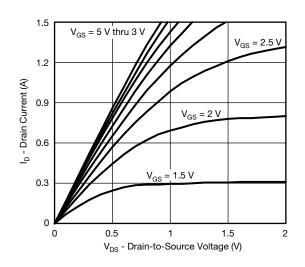
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static	<u> </u>						
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0, I_D = -250 \ \mu A$	-20	-	-	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	L 050 A	-	-12	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	-	1.8	-		
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.4	-	-1	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8 V$	-	-	± 30		
		$V_{DS} = 0 V, V_{GS} = \pm 4.5 V$ -		-	± 1		
	I _{DSS}	$V_{DS} = -20 V, V_{GS} = 0 V$	-	-	-1	μΑ 	
Zero Gate Voltage Drain Current		$V_{DS} = -20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 85 ^{\circ}\text{C}$	-	-	-10		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = \ge 5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-1.5	-	-	Α	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -0.4 \text{ A}$	-	0.630	0.760		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -0.2 \text{ A}$	-	0.865	1.040	_	
		$V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -0.1 \text{ A}$	-	1.200	1.500		
Forward Transconductance	g _{fs}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = 0.4 \text{ A}$	-	1	-	S	
Dynamic ^b	1 1		1	I	1	1	
Input Capacitance	Ciss		-	45	-	pF	
Output Capacitance	C _{oss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	-	15	-		
Reverse Transfer Capacitance	C _{rss}		-	10	-		
		V_{DS} = -10 V, V_{GS} = -4.5 V, I_D = -0.4 A	-	1.65	2.50		
Total Gate Charge	Qg	Qg	-	1	2		
Gate-Source Charge	Q _{gs}	$V_{DS} = -0 V$, $V_{GS} = -2.5 V$, $I_D = -0.4$	-	0.2	-	nC	
Gate-Drain Charge	Q _{gd}		-	0.26	-		
Gate Resistance	Rg	f = 1 MHz	2.4	12	24	Ω	
Turn-On Delay Time	t _{d(on)}		-	9	18		
Rise Time	t _r	$V_{DD} = -10 \text{ V}, \text{ R}_{\text{L}} = 33.3 \Omega$	-	10	20	-	
Turn-Off DelayTime	t _{d(off)}	$I_D \cong -0.3 \text{ A}, \text{V}_{\text{GEN}} = -4.5 \text{ V}, \text{R}_\text{g} = 1 \Omega$	-	10	20		
Fall Time	t _f		-	8	16		
Turn-On Delay Time	t _{d(on)}		-	1	2	ns	
Rise Time	t _r	$V_{DD} = -10 \text{ V}, \text{ R}_{\text{I}} = 33.3 \Omega$	-	8	16		
Turn-Off DelayTime	t _{d(off)}	$I_D \cong -0.3$ A, $V_{GEN} = -8$ V, $R_g = 1$ Ω	-	9	18	-	
Fall Time	t _f		-	5	10		
Drain-Source Body Diode Characteris	tics					1	
Pulse Diode Forward Current ^a	I _{SM}		-	-	-1.5	А	
Body Diode Voltage	V _{SD}	I _S = -0.3 A	-	-0.8	-1.2	V	
Body Diode Reverse Recovery Time	t _{rr}		-	16	24	ns	
Body Diode Reverse Recovery Charge Q _{rr}			-	8	16	nC	
Reverse Recovery Fall Time	I _F = -0.3 A, dI/dt = 100 A/μs		-	11	-		
			5		ns		

Notes

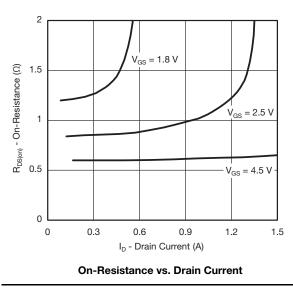
a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$

b. Guaranteed by design, not subject to production testing.

tb

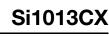

www.vishay.com

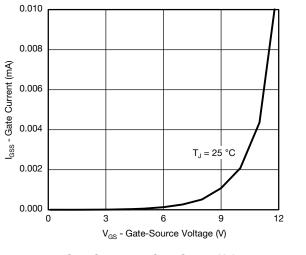
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Reverse Recovery Rise Time

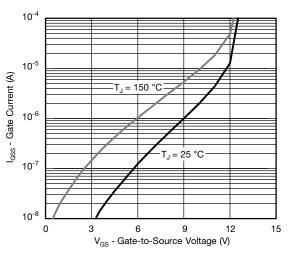
5

Gate Current vs. Gate-Source Voltage

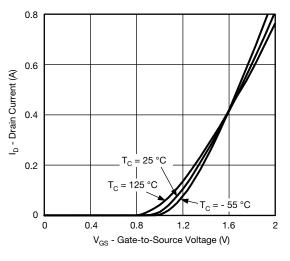



S14-1601-Rev. B, 11-Aug-14

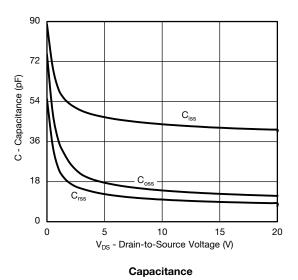
Document Number: 67995


Vishay Siliconix

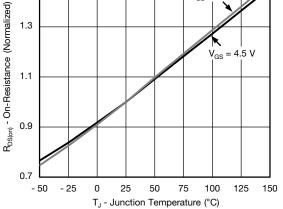
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

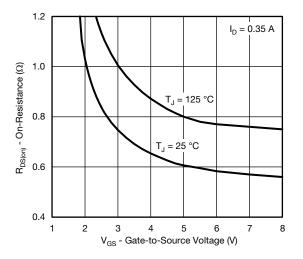


www.vishay.com

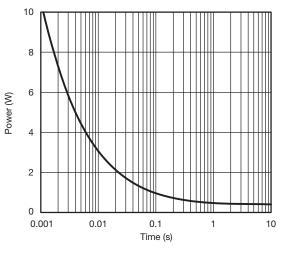

ISHAY

Gate Current vs. Gate-Source Voltage





For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


 $V_{GS} =$

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

S14-1601-Rev. B, 11-Aug-14

- 25

0

25

50

T_J - Temperature (°C)

Threshold Voltage

Document Number: 67995

1.5

1.3

 $I_{\rm D} = 0.35 \, {\rm A}$

8

6

0.1

0.7

0.6

0.5

0.4

0.3

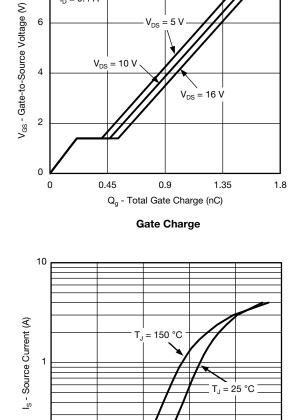
- 50

 $V_{GS(th)}$ (V)

0.0

0.3

I_D = 0.4 A


Si1013CX

Vishay Siliconix

2.5 V

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

 $V_{DS} = 5 V$

V_{SD} - Source-to-Drain Voltage (V) Source-Drain Diode Forward Voltage

0.6

0.9

 $I_{D} = 250 \ \mu A$

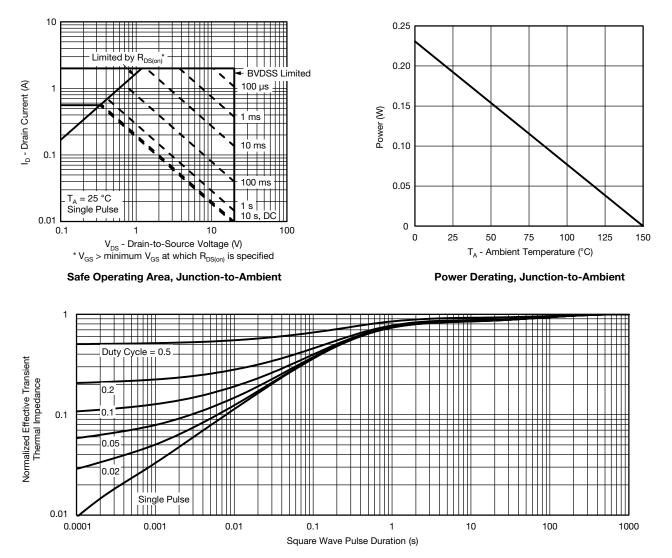
75

100

125

150

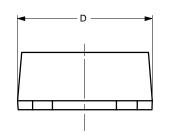
1.2

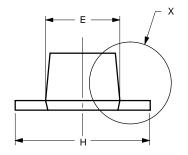

1.5

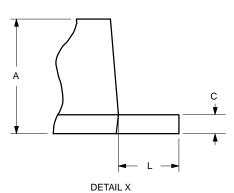
4 For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

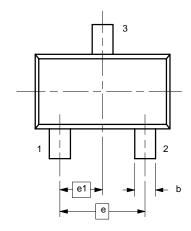
Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

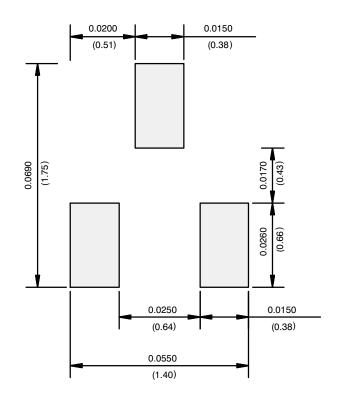



Normalized Thermal Transient Impedance, Junction-to-Ambient


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67995.



SC89-3


	MILLIN	IETERS	INC	HES	
Dim	Min	Max	Min	Max	
Α	0.60	0.80	0.024	0.031	
b	0.23	0.33	0.009	0.013	
С	0.10	0.20	0.004	0.008	
D	1.50	1.70	0.059	0.067	
E	0.75	0.95	0.030	0.037	
е	1.00	BSC	0.040 BSC		
e ₁	0.50 BSC		0.020	BSC	
Н	1.50	1.70	0.059	0.067	
L	0.30	0.50	0.012	0.020	
ECN: S-03946—Rev. B, 09-Jul-01 DWG: 5869					

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SC-89: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.