

3A Step-Down Adjustable Voltage Regulator in bare die form

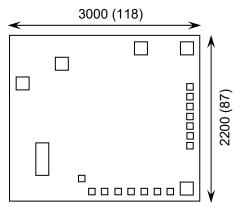
Rev 1.0 30/09/21

Description

The SiS2576-ADJ is a monolithic step-down(buck) switching regulator provisioned to drive 3A loads with very tight line and load regulation. The device is internally equipped with frequency compensation and fixed frequency oscillator. The device delivers higher efficiency than the traditional 3-terminal linear regulator and enables reduction or in some cases elimination of heat sinking. The SiS2576 operates with a minimal number of external components and makes use of a widely available and optimized inductor to simplify switchmode power design. The device features a guaranteed ±4% output voltage (within specified input voltages and output load conditions) and ±10% oscillator frequency tolerance. External shutdown is integrated and features 50µA (typical) standby current. The output switch is equipped with cycle-by-cycle current limiting and thermal shutdown for full protection during fault conditions.

Features:

- Adjustable output range
- Guaranteed output current
- Wide 40V input range
- Requires x6 external components on
- 52kHz fixed frequency internal oxcillator
- TTL shutdown capability, ow power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shitdown and current limit protection
- Reduced ne t sink requirement versus linear regulators.


Ordering Information

The following part suffixes apply:

No suffix - MIL-STD-883 /2010B Visual Inspection

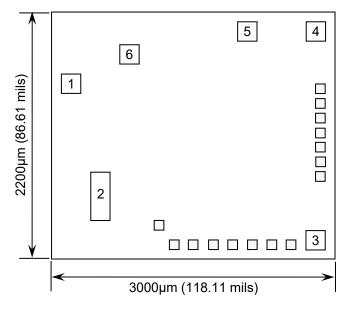
For High Reliability versions of its product please see

Die Dimensions in µm (mils)

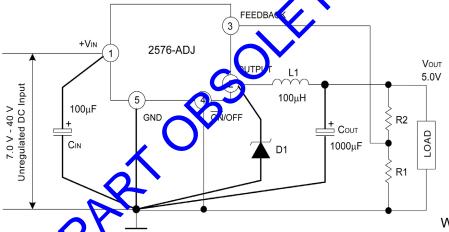
Supply Formats:

- Dafault Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 380µm(15 Mils) On request
- Assembled into in TO-220 package On request

Mechanical Specification


Die Size (Un-sawn)	3000 x 2200 118 x 87	µm mils	
Minimum Bond Pad Size	150 x 150 5.90 x 5.90	µm mils	
Die Thickness	380 (±20) 14.96 (±0.79)	μm mils	
Top Metal Composition	Al		
Back Metal Composition	N/A – Bare Si		

Rev 1.0 30/09/21


Pad Layout and Functions

Pinout (Assembled in TO-220)

Functional Diagram (Pad assignment

TAB - GND

C_{IN} - 100µF, 75V, Aluminum Electrolytic C_{OUT} - 1000µF, 25V, Aluminum Electrolytic

D1 - Schottky, MBR360

L1 - 100µH, Pulse Eng. PE-92108 R1 - 2kΩ, 0.1%

R2 - $6.12k\Omega$, 0.1%

$$V_{OUT} = V_{REF} (1 + \frac{R2}{R1})$$

$$R2 = R1 (\frac{V_{OUT}}{V_{REF}} - 1)$$

Where V_{REF} = 1.23V, R1 between 1k Ω & 5k Ω

PAT	FUNCTION	DESCRIPTION
1	V _{IN}	Supply input pin to collector pin of high-side transistor. Connect to power supply and input bypass capacitors C_{IN} . Path from V_{IN} pin to high frequency bypass C_{IN} and GND must be as short as possible.
2	V _{OUT}	Power transistor Emitter pin. This is a switching node. Attach this pin to an inductor & the cathode of the external diode.
3	FEEDBACK	Feedback sense input pin. Connect to the midpoint of feedback divider to set V _{OUT} .
4	ON / OFF	Voltage regulator enable input. High = OFF, Low = ON. Connect to GND to enable. Do not leave this pin floating.
5	GND	Ground pin. Path to C _{IN} must be as short as possible.
CHIP BACK	GND	Attach to heatsink or copper plane for thermal relief where required.
1		

Rev 1.0 30/09/21

Absolute Maximum Ratings¹ (Voltages referenced to GND unless otherwise stated)

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{CC}	45	
ON / OFF Pin input Voltage	V _{IN}	$-0.3V \le V \le +V_{IN}$	V
Output Voltage to Ground (Steady State)	V _{OUT}	-1	V
Power Dissipation	P _D	Internally Limited	W
Storage Temperature	T _{STG}	-65 to +150	°C
Operating Junction Temperature	T _J	-40 to 125	°C
ESD Rating (C = 100pF, R = $1.5k\Omega$)	V _{ESD}	≥2	kV

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum atings, for extended periods, may reduce device reliability.

Recommended Operating Conditions (Voltages reference to SND unless otherwise stated)

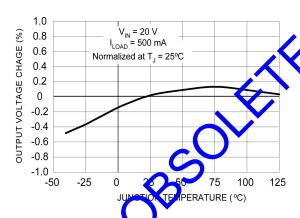
PARAMETER	SYMBOL	MIN	MAX	UNIT
Operating Temperature	T _J	40	+125	°C
Supply Voltage	V _{CC}		40	V

DC Electrical Characteristics² V_{IN} = 12V, I_{LQ40} 500mA, T_J = -40°C to +125°C(unless noted otherwise)

PARAMETER	SYMBOL CONDITION		vie.		LIMITS		
FARAIVIETER	STWIDOL			MIN	TYP	MAX	UNITS
Feedback Voltage		$V_{IN} = 12 I_{LOAL}$ $V_{OV} = 5 V, T_{J} = 0$		1.217	1.230	1.243	V
	V _{OUT}	8.0V ≤ V₁≤ 40V,	T _J = 25°C	1.193	1.230	1.267	V
		$0.5A \le I_{LOAD} \le 3.0A,$ $V_{OA} = 5V$	Full Range	1.180	-	1.280	V
Efficiency	η (V_{IN} 12V, $I_{LOAD} = 3A$,V _{OUT} = 5V	-	77	-	%
Feedback Bias	100	V _{OUT} = 5V	T _J = 25°C	-	50	100	n A
Current			Full Range	-	-	500	nA
Oscillator Frequency ³	T _J = 25°C			47	52	58	kHz
Oscillator Frequency	I _O			42	-	63	KIIZ
Saturation Voltage	V_{SAT}	I _{OUT} = 3.0A	T _J = 25°C	-	1.4	1.8	V
Saturation voltage			Full Range	-	-	2.0	_ v
Max Duty Cysle (ON) ⁵	DC			93	98	-	%
Current Dimit ^{3, 4}	I _{CL}		T _J = 25°C	4.2	5.8	6.9	Α
		Full Range	3.5	-	7.5		
Output Leakage ⁶	1	Output = 0V, V _{IN} = 40V T _J = 25°C		-	-	2.0	m A
Current	l _L	Output = -1V, V _{IN} =40V T _J = 25°C		-	7.5	30	– mA
Quiescent Current ⁶	IQ	T _J = 25°C		-	5	10	mA
Standby Current	I _{STBY}	ON/OFF Pin = 5V(off), T _J = 25°C		-	50	200	μA

^{2.} External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the SiS2576-ADJ is used as shown in the Functional diagram with related external components, system performance will be as shown in system parameters section of Electrical Characteristics and associated figures.

Rev 1.0 30/09/21


DC Electrical Characteristics V_{IN} = 12V, I_{LOAD} = 500mA, T_J = -40°C to +125°C(unless noted otherwise)

PARAMETER SYMBOL		CONDITIONS		LIMITS			UNITS
IANAMETER	STWIDGE	INIBOL GONDITIONS		MIN	TYP	MAX	ONITS
ON / OFF CONTROL							
ON / OFF Pin Logic Input Level	V _{IH}	V _{OUT} = 0V	T _J = 25°C	2.2	1.4		V
			Full Range	2.4	-		
	V _{IL}		T _J = 25°C	-	1.2	1.0	
		Full Range	-		0.8		
ON / OFF Pin	I _{IH}	T _J = 25°C		-	12	30	
Input Current	I _{IL}	1 J = 25 C		-		10	μΑ

^{3.} The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overtical which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the a erage dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%. 4. Output (Pad 2) sourcing current. No glode, inductor or capacitor connected to output. 5. Feedback (Pad 3) removed from output and connected to 0V. 6. Feedback (Pad 3) removed from output and connected to +12V, to force the output transistor "OFF"

1.2

Typical Performance Characteristics²

DUTPUT VOLTAGE CHAGE (%) $I_{LOAD} = 500 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$ 1.0 8.0 0.6 5.0V 0.4 0.2 0 -0.2 -0.4 -0.6 50 0 10 30 40 60 INPUT VOLTAGE (V)

ized output voltage Figure 1

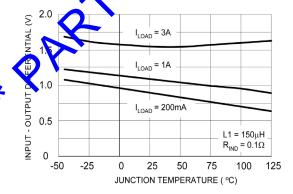


Figure 2 - Line Regulation

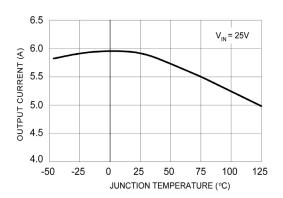


Figure 3 - Dropout Voltage

Figure 4 - Current Limit

Typical Performance Characteristics continued²

Rev 1.0 30/09/21

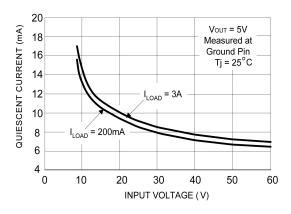


Figure 5 – Quiescent Current

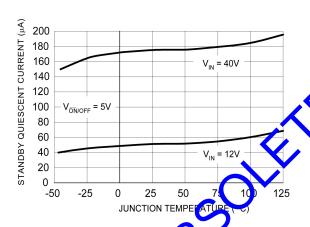


Figure 7 – Standby Quies of Current

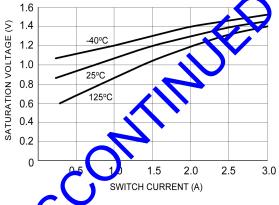


Figure 6 – Switch Saturation Voltage

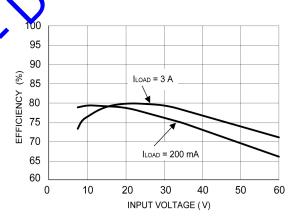
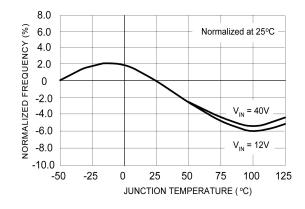
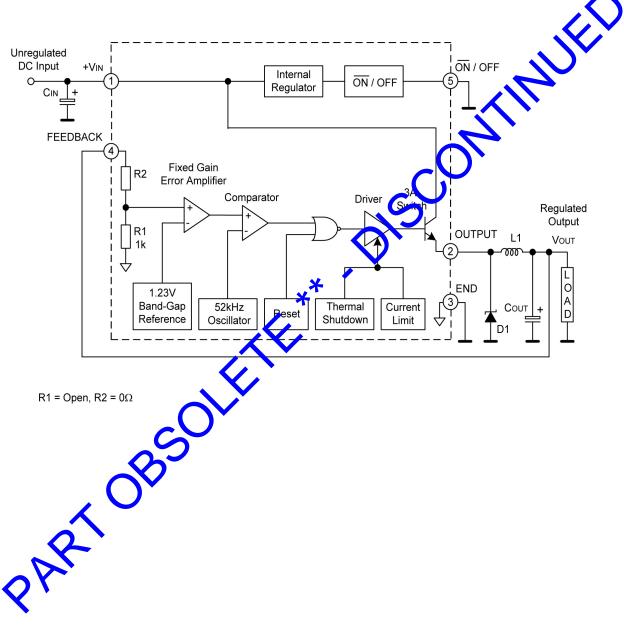


Figure 8 – Efficiency




Figure 9 - Oscillator Frequency

Rev 1.0 30/09/21

Block Diagram

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

