

Analog Temperature Sensor – LM135A

Single-supply linear-output temperature sensor in bare die form

Description

The LM135A precision linear-output temperature sensor is designed for simple calibration and ease of use. Output is derived from an integrated 2-terminal Zener with a breakdown voltage directly proportional to absolute temperature at 10mV/°K. Calibrated at +25°C, the LM135A has a typical accuracy of 0.3°C over a wide -55°C to 150°C temperature range. With less than 1 Ω dynamic impedance, performance is consistent across a current range of 450µA to 5mA. The device suits use as a general purpose sensor where its small size, low impedance and linear output enables simple circuit integration.

Ordering Information

The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection + MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K (AT)
- LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.csm\quality\bare-die-lot-qualification

Supply Formats:

- Default Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Hermetic Package On request

Features:

- Wide temperature range: -55 to +15 °C
- 0.3% typical accuracy at 25°C
- Single-point calibration for high precision
- Operates from 450µA t. 5mA
- <1Ω dynamic impedance
- Linear output
- Intermitten operation capability at 200°C
- Small size tor high integration

Die Dimensions in µm (mils)

1500 (59)

Mechanical Specification

Die Size (Unsawn)	1500 x 1050 59 x 41	µm mils	
Minimum Bond Pad Size	104 x 104 4.09 x 4.09	µm mils	
Die Thickness	350 (±20) 13.78 (±0.79)	µm mils	
Top Metal Composition	Al 1%Si 1.1µm		
Back Metal Composition	N/A – Bare Si		

Rev 1.1

Application Note:

Self-heating can decrease accuracy; LM135A should be operated at low current but sufficient enough to drive the sensor and calibration circuit to the maximum operating temperature. If used in surroundings where the thermal resistance is constant, the errors due to self-heating can be externally calibrated. This is possible if the circuit is biased with a temperature stable current. Heating will then be proportional to Zener voltage and therefore temperature. In this way, the error due to self-heating is proportional to the absolute temperature as scale factor errors.

Rev 1.1

Absolute Maximum Ratings¹

	5			
PARAMETER	SYMBOL	VAL	UNIT	
Reverse Current	I _R	1	I DA	
Forward Current	I _F	1	nA	
Operating Temperature	Таргр	Continuous	-55 to +150	°C
	OPER	Intermittent	-55 to +200	V [°]
Storage Temperature	T _{STG}	-65 to +150		°C

1. Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.

Recommended Operating Conditions

PARAMETER		SYMBOL	MIN	MAX	UNITS
Temperature	Continuous	T _A	-55	150	°C
	Intermittent		-55	206	
Forward Current		I _F	0.45	5	mA

Temperature Parameters² (T_A = 25°C unless therwise specified)

PARAMETER	SYMBOL	CONDITIONS	LIMITS			
	OTWIDOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	V _{OUT}	T _J = 25 ℃, 🖢 = 1mA	2.97	2.98	2.99	V
Un-calibrated	ΔT_1	T _A = 25°C, I _R = 1mA	-	0.5	1	°C
Temperature Error	ΔT_2	-55°C< T _A ≤ 150°C,I _R = 1mA	-	1.3	2.7	°C
25°C Calibrated	ΔT_3	-55°C≤ 1 _A ≤ +150°C,I _R = 1mA	-	0.3	1	°C
Temperature Error	ΔT_4	200°C, Intermittent	-	2	-	°C
Non-linearity	ΔT ₅	<u>-5</u> °C≤ T _A ≤ +150°C,I _R = 1mA	-	0.3	0.5	°C

Electrical Parameters² ($T_A = 25^{\circ}C$ unless otherwise specified)

PARAMETER	SYMBOL C	CONDITIONS		LIMITS		
		CONDITIONS	MIN	TYP	MAX	UNITS
Output voltage change with ourcest	ΔV _{out}	450µA ≤ I _R ≤ 5mA, Constant temperature	-	2.5	10	mV
Dynamic (mr edance	ΔR_1	$T_{\rm J}$ = 25°C, $I_{\rm R}$ = 1mA	-	0.5	-	Ω
Tempelature coefficient of output voltage	тс	T _J = 25°C, I _R = 1mA	-	+10	-	mV/°C
Time constant	ττ	Still air	-	80	-	
		Air 0.5m/s	-	10	-	S
		Stirred oil	-	1	-]
Time stability	T _{STAB}	T _J = 125°C	-	0.2	-	°C/1000h

2. Accuracy measurements are made in a well-stirred oil bath. For other conditions, self-heating must be considered.

Rev 1.1

Typical Characteristics (T_J = 25°C unless otherwise specified)

Typical Characteristics (T_J = 25°C unless otherwise specified)

FIGURE 9. Thermal time constant

Analog Temperature Sensor – LM135A

Typical Characteristics (T_J = 25°C unless otherwise specified)

FIGURE 12. Forward characteristics

Rev 1.1 28/04/20

Typical Applications

Rev 1.1 28/04/20

FIGURE 16.

Isolated Temperature Sensor

Centigrade Thermometer

Differential Temperature Sensor

FIGURE 18.

Thermocouple compensation

Rev 1.1 28/04/20

FIGURE 20. Single power supply cold junction compensation

Circuit schematic

Rev 1.1 28/04/20

DISCAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

www.siliconsupplies.com

