

Linear Voltage Regulator – 78L05AC

Positive Fixed 5V Voltage Regulator in bare die form

Description

The 78L05AC is a 5V fixed 3-terminal voltage regulator delivering up to 100mA of output current and equipped with internal limiting + thermal shutdown features for overload immunity. Implementing this device at pointof-source removes the complexity of single point regulation methods with reduced noise. Used in replacement of a Zener diode/resistor combination, the device improves output impedance by x2 order of magnitude and delivers lower bias current with lower noise. The device can also be used with power-pass elements to make high-current voltage regulators.

Ordering Information

The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-PRF-883 /2010B Visual Inspection + MIL-STD-38534 Class H LAT
- "K" MIL-PRF-883 /2010A Visual Inspection (Space)
 + MIL-STD-38534 Class K AT

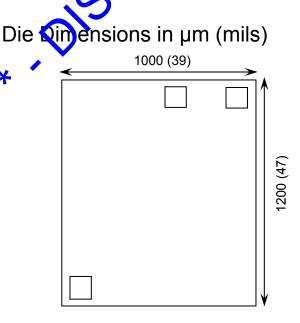
LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification

Supply Formats:

- Defact Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- With Ti/Ni/Ag Back Metal On request
- In Metal or Ceramic package On request

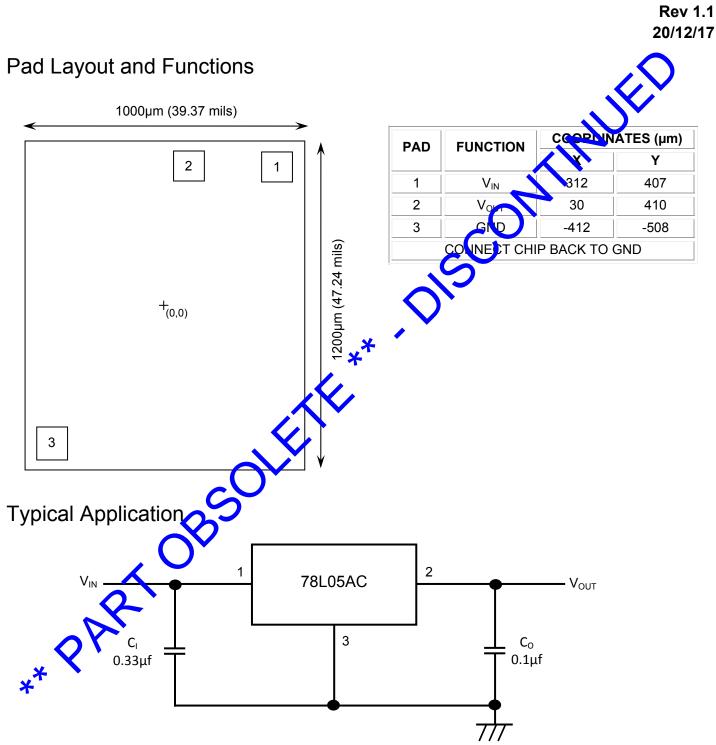

Features:

• ±5% V_{OUT} tolerance over entire temperature range

Rev 1.1

20/12/17

- 100mA Output Current
- Internal thermal overload protector
- Internal short circuit current horit
- Full Military Temperature Range
- Negative Voltage complement is 79L05AC



Mechanical Specification

Die Size (Unsawn)	1000 x 1200 39.37 x 47.24	µm mils	
Minimum Bond Pad Size	110 x 105 4.33 x 4.13	µm mils	
Die Thickness	280 (±20) 11 (±0.8)	µm mils	
Top Metal Composition	Al 1%Si 1.4µm		
Back Metal Composition	N/A – Bare Si		

 C_l is required if the regulator is located an appreciable distance from power supply filter. C_o is not required for stability; however it does improve transient response. For optimum stability and transient response locate $C_l C_o$ as close as possible to the regulator.

www.siliconsupplies.com

Absolute Maximum Ratings

PARAMETER	SYMBOL	VALUE	UNIT	
Input Voltage	V _{IN}	30		
Power Dissipation ¹	PD	620	n.W/	
Operating Temperature Range	-	-55 to 125	C	
Maximum Junction Temperature	TJ	150	°C	
Storage Temperature	T _{STG}	-65 to 150	°C	

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	NAX	UNIT
Input Voltage	V _{IN}		20	V
Output Current	I _{OUT}	5	100	mA
Operating Temperature Range	TJ	-55	125	°C

DC Electrical Characteristics, VI = 10V, IOUT=40mA, CI=0.33µF, CO=0.1µf, 0°C<TJ<+125°C(unless noted otherwise)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
Output Voltage		$T_{\rm J} = 25^{\circ} C, I_{\rm O} = 40 m A$	4.80	5.00	5.20	V	
	V _{OUT}	$1\text{mA} \le I_{\text{OUT}} \le 40\text{m}$ A, $7\text{V} \le \text{V}_{\text{IN}} \le 20\text{V}$	4.75	5.00	5.25		
		$1 \text{mA} \le I_{OUT} \le 70 \text{mA}, V_{IN} = 10 \text{V}$	4.75	5.00	5.25		
Line Regulation	ΔV _{OUT}	$7V \le V_{IN} \le 20V$, $T_J = 25^{\circ}C$, $I_O = 40mA$	-	32	150		
	A • 001	$8V \leq V_{IN} \leq 20V$, $T_J = 25^{\circ}C$, $I_0=40mA$	-	26	100	mV	
Load Regulation	ΔV _{OUT}	$1 \text{ nA} \leq I_{OUT} \leq 100 \text{ mA}, \text{ T}_{J} = 25^{\circ}\text{C}$	-	15	60	iii v	
Load Regulation		1nu ≤ I _{OUT} ≤ 40mA, T _J = 25°C	-	8	30		
Input Bias Current		↓ = 25°C	-	3.8	6.0	mA	
		T _J = 125°C	-	-	5.5	11// (
Input Bias Current		$8V \le V_{IN} \le 20V$	-	-	1.5	mA	
Change		$1mA \le I_{OUT} \le 40mA$	-	-	0.1		
Output Noise Voltage	e _N	10Hz ≤ f ≤ 100KHz, T _A = 25°C	-	42	-	μV_{RMS}	
Ripple Rejection	RR	$f = 120Hz, 8V \le V_{IN} \le 18V, T_J = 25^{\circ}C$	41	49	-	dB	
Dropout Voltage	VD	V _{IN} -V _{OUT}	-	1.7	-	V	

1. Value measured in TO-92 package applicable only for DC power dissipation permitted by absolute maximum ratings. Results in die form are dependent on die attach and assembly method.

Rev 1.1 20/12/17

Linear Voltage Regulator – 78L05AC

Rev 1.1 20/12/17

R The' DISCEAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

