

Quad 2-input NAND buffer (open drain) in bare die form

Rev 1.0 18/01/21

Description

74ACT38 provides x4 independent 2-input NAND gates performing the Boolean function Y = $\overline{A} \cdot \overline{B}$ or Y = $\overline{A} + \overline{B}$. The device is fabricated using an advanced 1.5µm 5V CMOS process combining high speed LSTTL performance with CMOS low power consumption. The provision of opendrain outputs enables implementation of active-low wired-OR or active-high wired-AND functionality. Device inputs directly accept both standard CMOS and LSTTL outputs. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

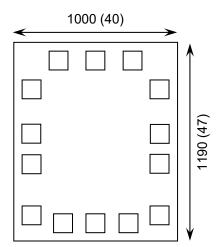
Ordering Information

The following part suffixes apply:

No suffix - MIL-STD-883 /2010B Visual Inspection

For High Reliability versions of this product clease see

54ACT38


Supply Formats:

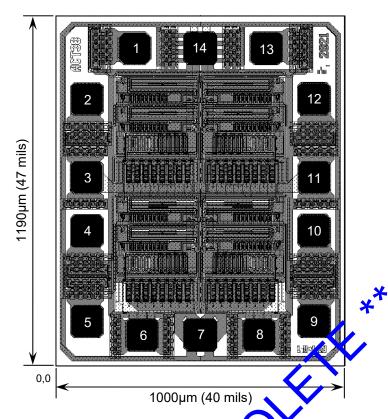
- Defaut Die in Waffle Pack (400 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Die Thickness <> 350µm(14 Mils) On request
- Assembled into Ceramic Package On request

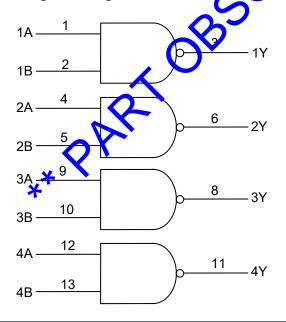
Features:

- Inputs directly accept TTL
- Outputs directly interface CMQS NMOS and TTL
- Open-drain output for wired Raired-AND function
- Outputs Source/Sink 24 mA
- Low Input Current 1uA
- Functionally compatible with bipolar 74LS38, 74F38
- Lower pover alternative to bipolar logic.

Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1000 x 1190 40 x 47	µm mils
Minimum Bond Pad Size	100 x 100 4 x 4	µm mils
Die Thickness	350 (±20) 13.78 (±0.79)	μm mils
Top Metal Composition	Al 1%Si 1.1μ	m
Back Metal Composition	N/A – Bare S	Si


Rev 1.0 18/01/21

Pad Layout and Functions

PAD	FUNCTION	COORDINA	ATES (mm)
FAD	FUNCTION	Х	Y
1	1A	0.250	0.980
2	1B	0.100	0.820
3	1Y	0.100	0.580
4	2.	0.100	0.420
5	2В	0.100	0.140
6	ZÝ	0.270	0.100
	GND	0.450	0.100
2	3Y	0.670	0.100
Э	3A	0.790	0.140
10	3B	0.790	0.420
11	4Y	0.790	0.590
12	4A	0.790	0.820
13	4B	0.650	0.980
14	V _{CC}	0.450	0.980
CON	NECT CHIP BA	CK TO V _{CC} C	R FLOAT

Logic Diagram

Truth Table

INP	JTS	OUTPUT
Α	В	Y
L	L	Z
L	H	Z
Н	L	Z
Н	Н	L

H = High level (steady state) L = Low level (steady state)

Z = High Impedance state

Rev 1.0 18/01/21

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE	UNIT
DC Supply Voltage (Referenced to GND)	V _{CC}	-0.5 to +7.0	V
DC Input or Output Voltage (Referenced to GND)	$V_{IN,}V_{OUT}$	-0.5 to V _{CC} +0.5	X
Storage Temperature Range	T _{STG}	-65 to 150	8
Input Current (per Pad)	I _{IN}	±20	mA
Output Current (per Pad)	I _{OUT}	±50	mA
DC Supply Current, V _{CC} or GND, per pad	I _{cc}	±50	mA
Power Dissipation in Still Air ²	P _D	500	mW

^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic SSOP package, results in die form are dependent on the absolute maximum ratings, for extended periods, may reduce device reliability. 2. Measured in plastic SSOP package, results in die form are dependent on the absolute maximum ratings may cause device failure.

Recommended Operating Conditions³ (Voltages Referenced to GND)

ı		, ,		- ,
PARAMETER	SYMBOL	MIN	MAX	UNITS
DC Supply Voltage	V _{CC}	4.5	5.5	V
DC Input or Output Voltage	V_{IN} , V_{OUT}	0 🧪	V _{CC}	V
Operating Temperature Range	T _J	-55	+125	°C
Output current - High	I _{OH}	-	-24	mA
Output current - Low	lou	-	24	mA
Input Rise or Fall rate V _{CC} = 4.5V	Δ+/Δ	0	10	ns/V
$(V_{IN} \text{ from 0.8V to 2V})$ $V_{CC} = 5.5V$	ΔυΔν	0	8	115/ V

^{3.} This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maxim in rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{OUT} . Unused outputs must be left open.

DC Electrical Characteristics (Voltages referenced to GND)

PARAMETER	SYMBOL	V _{cc}	CONDITIONS	LIMITS			UNITS
	O MILD DE	▼ CC	CONDITIONS	25°C	85°C	FULL RANGE⁴	0.4110
Minimum High-Level	V _{IH}	4.5V	$V_{OUT} = 0.1V$	2	2	2	V
Input Voltage	▼ VIH	5.5V	or V _{CC} -0.1V	2	2	2	, v
Maximum Low-Lovel	V _{IL}	4.5V	$V_{OUT} = 0.1V$	0.8	8.0	0.8	V
Input Volage	V IL	5.5V	or V _{CC} -0.1V	0.8	8.0	0.8	V
*		4.5V	Ι _{ΟυΤ} = 50μΑ	0.1	0.1	0.1	V
**		5.5V	1001 – 30μΑ	0.1	0.1	0.1	V
Minimum Low-Level	V _{OL}	4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}^5$	0.36	0.44	0.44	V
Output Voltage	VOL	5.5V	$I_{OL} = 24mA$	0.36	0.44	0.44	V
		4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}^{5,6}$	1.65	1.65	1.65	V
		5.5V	$I_{OL} = 50 \text{mA}$	1.65	1.65	1.65	\ \ \

^{4. -40°}C ≤ T_J ≤ +85°C 5. All outputs loaded; thresholds on input associated with output under test. 6. Test time 1sec max, measurement made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 75 Ω transmission-line drive capability at 85°C

Rev 1.0 18/01/21

DC Electrical Characteristics Continued (Voltages referenced to GND)

PARAMETER	SYMBOL	V _{cc}	CONDITIONS	LIMITS			UNITS	
		VCC GONDINONS	CONDITIONS	25°C	85°C	FULL RANGE⁴		
			4.5V	Ι _{ουτ} = -50μΑ	4.4	4.4	4.4	V
		5.5V	1001 – -30μΑ	5.4	5.4	5.4	V	
Minimum High-Level	V _{OH}	4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}^5$	3.86	3.76	3.75	V	
Output Voltage	V OH	5.5V	$I_{OL} = -24 \text{mA}$	4.86	4.76	4.76	V	
		4.5V	$V_{IN} = V_{IL} \text{ or } V_{IH}^{5,6}$	-	-	-	V	
		5.5V	$I_{OL} = -50 \text{mA}$	-		-	V	
Maximum Input Leakage Current	I _{IN}	5.5V	V _{IN} = V _{CC} or GND	±0.1	:1.0	±1.0	μA	
Maximum 3-State leakage current	I _{OZ}	5.5	$V_{OUT}=V_{CC}$ or GND, $V_{IN}=V_{IL}$ or V_{IH}	±0.5	+2.5	±2.5	μА	
Additional Maximum I _{CC} / Input	ΔI _{CCT}	5.5V	V _{IN} = V _{CC} -2.1V	3,6	1.5	1.5	mA	
Minimum Dynamic	I _{OLD}	5.5V	V _{OLD} = 1.65V Max		75	75	mA	
Output Current ⁷	I _{OHD}	5.5V	V _{OHD} = 3.86V Min	-	-75	-75	111/3	
Maximum Quiescent Supply Leakage Current	I _{CC}	5.5V	$V_{IN} = V_{CC}$ or GND $I_{OU} = 0\mu A$	4	40	40	μА	

^{7.} Maximum test duration 2ms, one output loaded at a time.

AC Electrical Characteristics⁸

PARAMETER	SYMBOL	L V _{cc}	V _G CONDITIONS	LIMITS			UNITS	
	STINIDOL	V _G	CONDITIONS	25°C	85°C	FULL RANGE⁴	ONTO	
Maximum Propagation Delay,	t _{PLI}	5V ±10%	GND = 0V, $C_L = 50pF,$	6	7	7	ns	
A or B to Y	t _{PHL}		$R_{L} = 500\Omega,$ $t_{r} = t_{f} = \le 2.5 \text{ns}$	6	7	7	113	
Maximum Propagation Delay, OFF-state to Love	t _{PZL}	5V ±10%	GND = $0V$, $C_L = 50pF$, $R_L = 500\Omega$,	5.1	6	6	ns	
Maximum Propagator Delay, Low to O.F-state	t _{PLZ}	5V ±10%	0 1 1 0 7 0 T	$t_r = t_f = \le 2.5 \text{ns},$ (Figure 1)	5.0	5.3	5.3	113
Maximum Input Capacitance	C _{IN}	5V ±10%	V _{IN} = V _{CC} or GND	8	8	8	pF	
Power Dissipation Capacitance ⁹	C _{PD}	-	T _J = 25°C, V _{CC} =5.0V		TYPIC 40		pF	

^{8.} Not production tested in die form, characterized by chip design.

^{9.} Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

Rev 1.0 18/01/21

Switching Waveforms

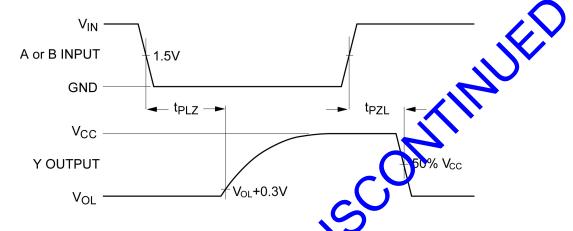
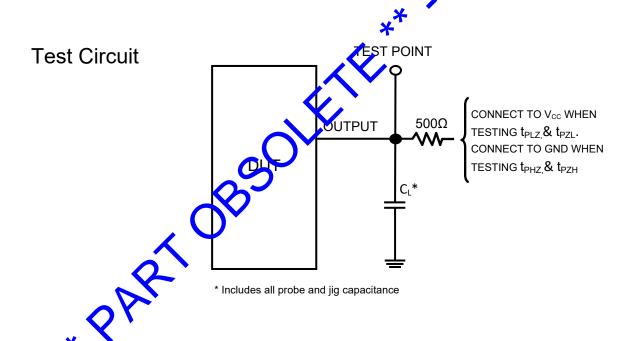



Figure 1 – Propagation Delay, Input 4 or 3 to Output Y

DISCEAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

