
Silicon Carbide MOSFET N-Channel Enhancement Mode

For physical chip dimensions please contact engineering@diedevices.com

 $\begin{array}{cccc} V_{DS} & = & 1700 \text{ V} \\ R_{DS(ON)(Typ.)} & = & 45 \text{ m}\Omega \\ I_{D(Tc} = 100^{\circ}\text{C)} & = & 40 \text{ A} \end{array}$

Features

- G3R™ Technology with +15 V Gate Drive
- Softer R_{DS(ON)} v/s Temperature Dependency
- LoRing[™] Electromagnetically Optimized Design
- Smaller R_{G(INT)} and Lower Q_G
- Low Device Capacitances (Coss, Crss)
- Superior Cost-Performance Index
- Robust Body Diode with Low V_F and Low Q_{RR}
- Industry-Leading UIL & Short-Circuit Robustness

Advantages

- Compatible with Commercial Gate Drivers
- Low Conduction Losses at all Temperatures
- Reduced Ringing
- Faster and More Efficient Switching
- Lesser Switching Spikes and Lower Losses
- Better Power Density and System Efficiency
- Ease of Paralleling without Thermal Runaway
- Higher System Reliability

Applications

- Electric Vehicle Fast Charging
- Solar Inverters
- Traction Inverters
- Smart Grid and HVDC
- High Voltage DC-DC Converters
- Switched Mode Power Supply
- Wind Energy Converters
- Pulsed Power

Absolute Maximum Ratings (At $T_C = 2$		<u> </u>			
Parameter	Symbol	Conditions	Values	Unit	Note
Drain-Source Voltage	$V_{DS(max)}$	V_{GS} = 0 V, I_D = 100 μA	1700	V	
Gate-Source Voltage (Dynamic)	V _{GS(max)}		-10 / +20	V	
Gate-Source Voltage (Static)	V _{GS(op)}	Recommended Operation	-5 / +15	V	
		$T_C = 25^{\circ}C$, $V_{GS} = -5 / +15 V$	53		
Continuous Forward Current	I_{D}	$T_C = 100$ °C, $V_{GS} = -5 / +15 V$	40	Α	
		$T_C = 135^{\circ}C$, $V_{GS} = -5 / +15 V$	32		
Pulsed Drain Current	I _{D(pulse)}	$t_P \le 3\mu s$, D $\le 1\%$, $V_{GS} = 15 V$, Note 1	120	Α	
Power Dissipation	PD	T _c = 25°C	425	W	Note 2
Non-Repetitive Avalanche Energy	Eas	L = 3.9 mH, I _{AS} = 17.5 A	592	mJ	
Operating and Storage Temperature	T _j , T _{stg}		-55 to 200	°C	

Note 1: Pulse Width t_P Limited by T_{j(max)}

Electrical Characteristics (At T_C = 25°C Unless Otherwise Stated)

Parameter	Symbol	Conditions -	Values			11. 11	
			Min.	Тур.	Max.	- Unit	Note
Drain-Source Breakdown Voltage	V_{DSS}	$V_{GS} = 0 \text{ V, } I_{D} = 100 \mu\text{A}$	1700			V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 1700 V, V_{GS} = 0 V		1		μΑ	
Gate Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V, } V_{GS} = 20 \text{ V}$			100	nA	
		$V_{DS} = 0 \text{ V, } V_{GS} = -10 \text{ V}$			-100	11/4	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 30.0 \text{ mA}$	1.8	2.70		V	Fig. 9
		$V_{DS} = V_{GS}$, $I_D = 30.0$ mA, $T_j = 200$ °C		1.85		•	
Transconductance	G fs	$V_{DS} = 10 \text{ V}, I_D = 35 \text{ A}$		16.8		S	Fig. 4
Tanoonauotanoo	3 13	$V_{DS} = 10 \text{ V, } I_D = 35 \text{ A, } T_j = 200^{\circ}\text{C}$		16.6			
Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 15 \text{ V}, I_D = 35 \text{ A}$		45	62	62 mΩ	Fig. 5-8
		V_{GS} = 15 V, I_D = 35 A, T_j = 200°C		108			
Input Capacitance	Ciss			3199		_	Fig. 11
Output Capacitance	Coss			86		pF	
Reverse Transfer Capacitance	Crss			15.3			
Coss Stored Energy	Eoss			57		μJ	Fig. 12
C _{oss} Stored Charge	Qoss	f = 1 MHz, V _{AC} = 25mV		172		nC	
Effective Output Capacitance (Energy Related)	$C_{o(\text{er})}$			114		pF	Note 3
Effective Output Capacitance (Time Related)	$C_{o(tr)}$			172		μг	Note 3
Gate-Source Charge	Qgs	V _{DS} = 1000 V, V _{GS} = -5 / +15 V I _D = 35 A		33			Fig. 10
Gate-Drain Charge	Qgd			37		nC	
Total Gate Charge	Qg	Per IEC607478-4		106			
Internal Gate Resistance	R _G (int)	$f = 1 MHz$, $V_{AC} = 25 mV$		1.3		Ω	
Turn-On Switching Energy (Body Diode)	E _{On}	$T_i = 25$ °C; $V_{GS} = -5/+15V$; $R_{G(ext)} = 1 \Omega$, $I_D =$		222		1	Fig. 18
Turn-Off Switching Energy (Body Diode)	E _{Off}	35 A; V _{DD} = 1200 V		100		μJ	
Turn-On Delay Time	t _{d(on)}			7			Fig. 20
Rise Time	t _r	$V_{DD} = 1200 \text{ V, } V_{GS} = -5/+15 \text{ V}$		16			
Turn-Off Delay Time	t _{d(off)}	- R _{G(ext)} = 1 Ω, I _D = 35 A $-$ Timing relative to V _{DS} , Resistive load $-$		6		ns	
Fall Time	tf	— Tilling relative to v_{DS} , resistive load -		10			

^{*}The chip technology was characterized up to 200 V/ns. The measured dV/dt was limited by measurement test setup and package.

Note 2: Assuming Rth_{JC(max)} = 0.41 °C/W

Note 3: $C_{O(er)}$, a lumped capacitance that gives same stored energy as C_{OSS} while V_{DS} is rising from 0 to 1000V. $C_{O(tr)}$, a lumped capacitance that gives same charging times as C_{OSS} while V_{DS} is rising from 0 to 1000V.

Reverse Diode Characteristics							
Parameter	Symbol	Conditions	Values			Unit	Note
			Min.	Тур.	Max.	Ullit	Note
Diode Forward Voltage	V _{SD}	$V_{GS} = -5 \text{ V, } I_{SD} = 17 \text{ A}$		4.5		V	Fig. 10.14
		V_{GS} = -5 V, I_{SD} = 17 A, T_j = 200°C		4.3		V FI	Fig. 13-14
Continuous Diode Forward Current	Is	$V_{GS} = -5 \text{ V, } T_{c} = 100^{\circ}\text{C}$	41			Α	
Diode Pulse Current	Is(pulse)	V _{GS} = -5 V, Note 1		164		Α	
Reverse Recovery Time	t _{rr}	V _{GS} = -5 V, I _{SD} = 35 A, V _R = 1200 V dif/dt = 2200 A/μs, T _j = 25°C		31		ns	
Reverse Recovery Charge	Qrr			305		nC	
Peak Reverse Recovery Current	I _{rrm}			8		Α	
Reverse Recovery Time	t _{rr}	V_{GS} = -5 V, I_{SD} = 35 A, V_R = 1200 V dif/dt = 2200 A/ μ s, T_j = 200°C		56		ns	
Reverse Recovery Charge	Qrr			1174		nC	
Peak Reverse Recovery Current	I _{rrm}			18		Α	

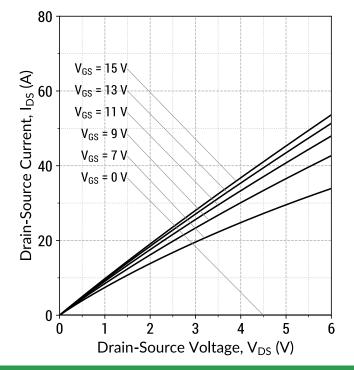


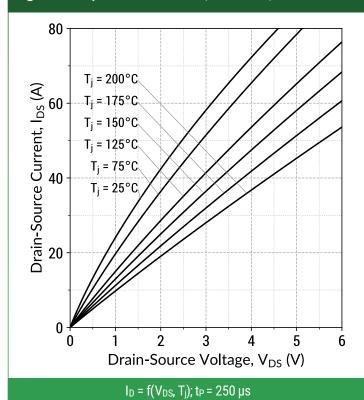
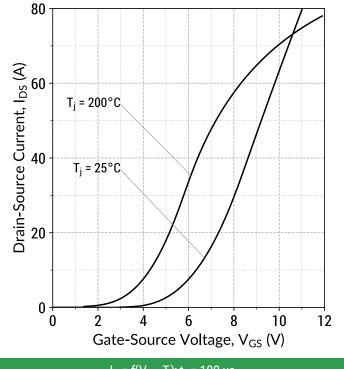
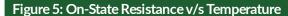
Figure 1: Output Characteristics (T_i = 25°C)

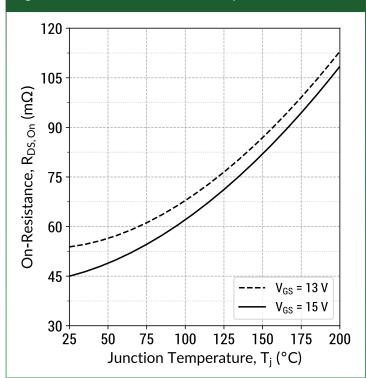
 $I_D = f(V_{DS}, V_{GS}); t_P = 250 \ \mu s$

Figure 2: Output Characteristics (T_i = 200°C)

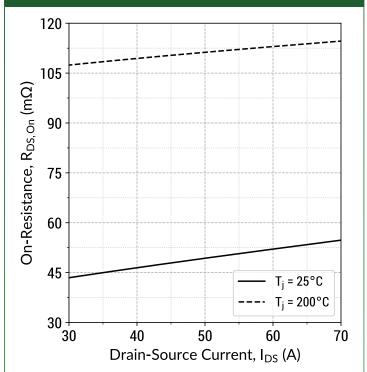
 $I_D = f(V_{DS}, V_{GS}); t_P = 250 \mu s$

Figure 3: Output Characteristics (V_{GS} = 15 V)


Figure 4: Transfer Characteristics (V_{DS} = 10 V)

 $I_D = f(V_{GS}, T_j); t_P = 100 \ \mu s$



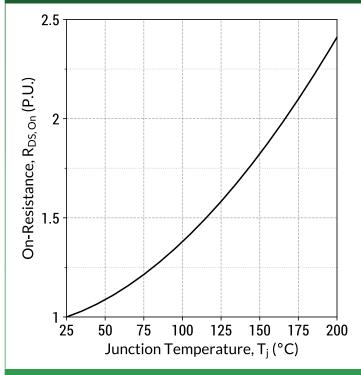
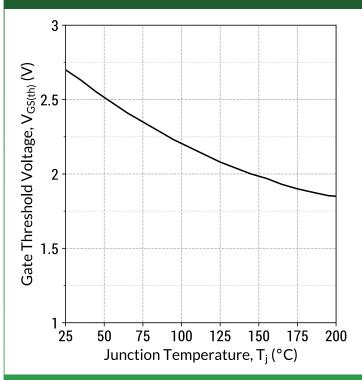

 $R_{DS(ON)} = f(T_j, V_{GS}); t_P = 250 \mu s; I_D = 35 A$

Figure 6: On-State Resistance v/s Drain Current

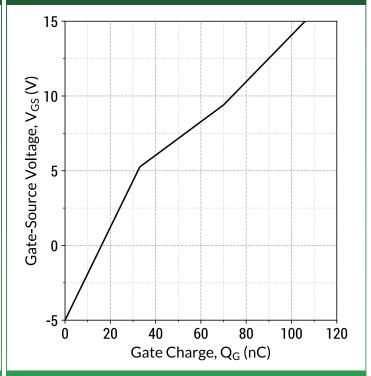
 $R_{DS(ON)} = f(T_j, I_D); t_P = 250 \mu s; V_{GS} = 15 V$

Figure 7: Normalized On-State Resistance v/s Temperature

 $R_{DS(ON)} = f(T_i); t_P = 250 \mu s; I_D = 35 A; V_{GS} = 15 V$


Figure 8: On-State Resistance v/s Gate Voltage

 $R_{DS(ON)} = f(T_j, V_{GS}); t_P = 250 \mu s; I_D = 35 A$



 $V_{GS(th)} = f(T_j); V_{DS} = V_{GS}; I_D = 30.0 \text{ mA}$

Figure 10: Gate Charge Characteristics

 $I_D = 35 \text{ A}$; $V_{DS} = 1000 \text{ V}$; $T_c = 25 ^{\circ}\text{C}$

Figure 11: Capacitance v/s Drain-Source Voltage

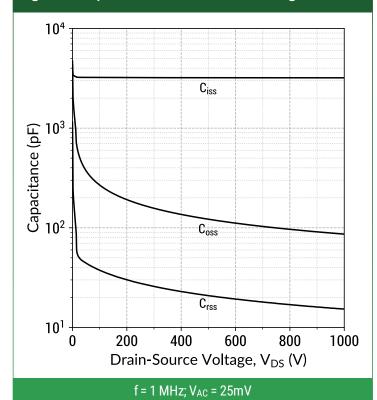
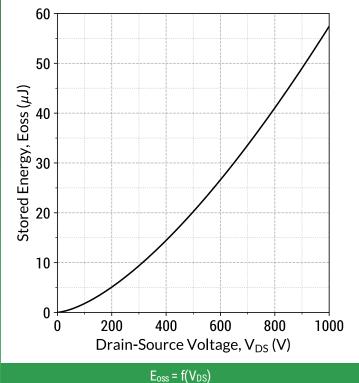
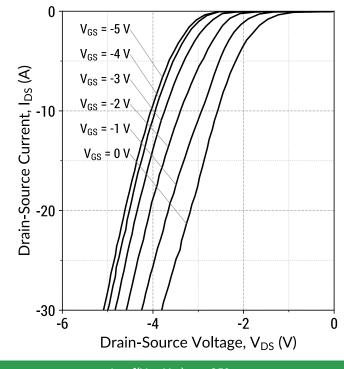


Figure 12: Output Capacitor Stored Energy

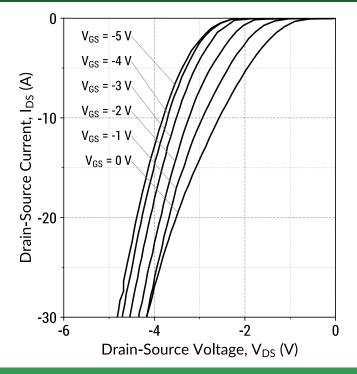


Figure 13: Body Diode Characteristics (T_i = 25°C)

 $I_D = f(V_{DS}, V_{GS}); t_P = 250 \,\mu s$

Figure 14: Body Diode Characteristics (T_j = 200°C)

 $I_D = f(V_{DS}, V_{GS}); t_P = 250 \mu s$

Figure 15: Third Quadrant Characteristics (T_i = 25°C)

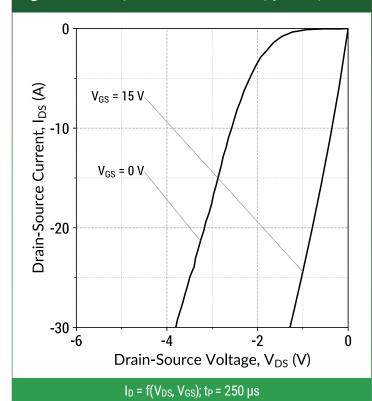
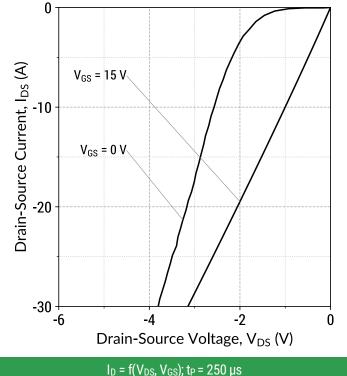
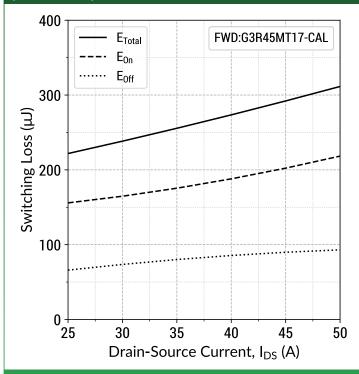


Figure 16: Third Quadrant Characteristics (T_j = 200°C)

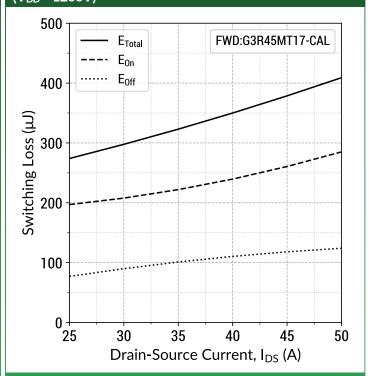


Figure 17: Resistive Switching Energy v/s Drain Current $(V_{DD} = 1000V)$

 T_j = 25°C; V_{GS} = -5/+15V; $R_{G(ext)}$ = 1 Ω

Figure 18: Resistive Switching Energy v/s Drain Current (V_{DD} = 1200V)

 $T_i = 25$ °C; $V_{GS} = -5/+15V$; $R_{G(ext)} = 1 \Omega$

Figure 19: Resistive Switching Energy v/s $R_{G(ext)}$ ($V_{DD} = 1200V$)

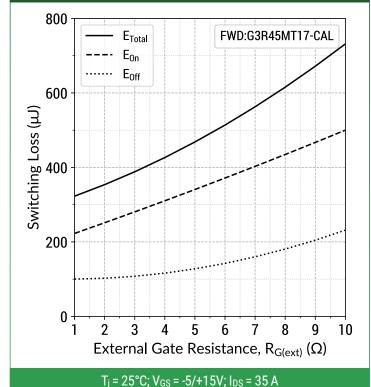
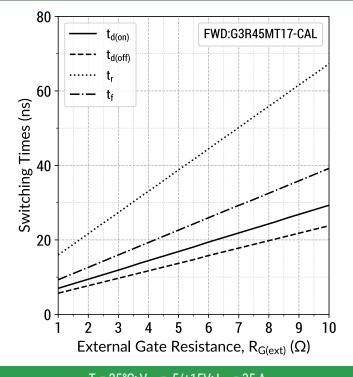
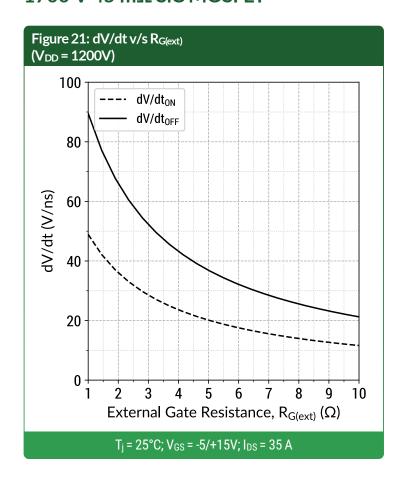
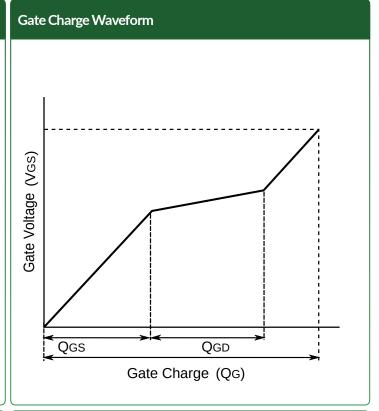
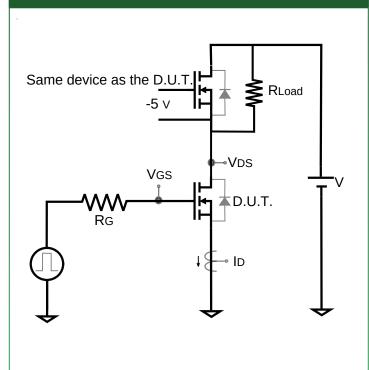
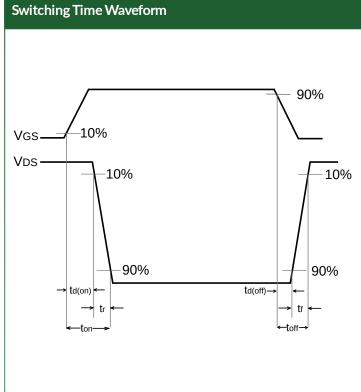




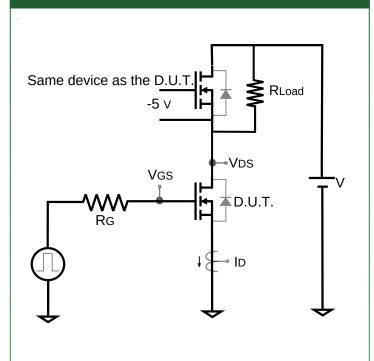
Figure 20: Switching Time v/s $R_{G(ext)}$ ($V_{DD} = 1200V$)

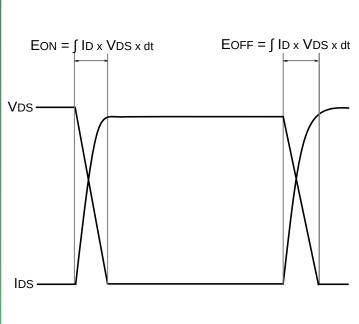


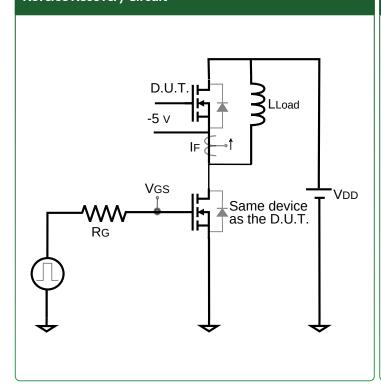


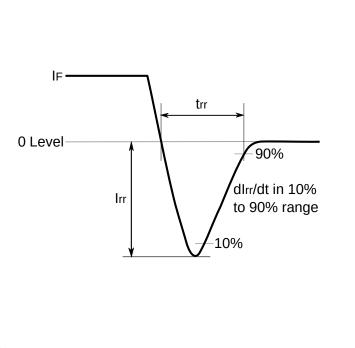

Gate Charge Circuit VDS Vgs D.U.T RLoad V_{DD} o ↓ ID

Switching Time Circuit


IG(cont)




Switching Energy Circuit


Switching Energy Waveform

Reverse Recovery Circuit

Reverse Recovery Waveform

Mechanical Parameters

This information is confidential, please contact sales@genesicsemi.com to learn more.

Chip Dimensions

This information is confidential, please contact sales@genesicsemi.com to learn more.

NOTE

- 1. CONTROLLED DIMENSION IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models: https://www.genesicsemi.com/sic-mosfet/G3R45MT17-CAL/G3R45MT17-CAL_SPICE.zip
PLECS Models: https://www.genesicsemi.com/sic-mosfet/G3R45MT17-CAL/G3R45MT17-CAL_PLECS.zip
CAD Models: https://www.genesicsemi.com/sic-mosfet/G3R45MT17-CAL/G3R45MT17-CAL_3D.zip

Gate Driver Reference: https://www.genesicsemi.com/technical-support
Evaluation Boards: https://www.genesicsemi.com/technical-support

Reliability: https://www.genesicsemi.com/reliability
Compliance: https://www.genesicsemi.com/compliance
Quality Manual: https://www.genesicsemi.com/guality

Revision History

• Rev 21/Jun: Updated switching time and switching energy data

· Supersedes: Rev 20/Jun, Rev 20/Sep, Rev 21/Feb

www.genesicsemi.com/sic-mosfet/

