

Total dose radiation and electrical testing of BFR391 bipolar transistors

Date of issue: June 2021

In confidence

Title	Total dose radiation and electrical testing of BFR391 bipolar transistors
Customer	Die Devices Ltd
Customer reference	SP264
Confidentiality, copyright and reproduction	In confidence This document has been prepared by Radtest Ltd in connection with a contract to supply goods and/or services and is submitted only on the basis of strict confidentiality. The contents must not be disclosed to third parties other than in accordance with the terms of the contract.
File reference	C180/54
Report number	REP214
Report status	Issue 1
	Radtest Ltd 168 Maxwell Avenue Harwell Oxfordshire OX11 0QT Telephone +44-(0)1235-436620

Radtest Ltd is certificated by BSi to BS EN ISO9001 (2015) under certificate number FS613540.

Name

Signature

Date

Author

RE Sharp

Kichard Sharp.

08/06/2021

Contents

1	Introduc	tion	4
2	Referen	ice documents	4
3	Descrip	tion of the samples	4
	3.2 PI	DENTIFICATION OF THE SAMPLES ICTURES OF THE SAMPLES ISPOSITION OF THE SAMPLES	4 5 5
4	Radiatio	on environment	6
	4.2 D 4.3 R	ADIATION SOURCE OSIMETRY ADIATION DOSE STEPS ADIATION DOSE RATE	6 6 6
5	Test co	nditions and parameters measured	7
	5.2 P 5.3 P	EST CONDITIONS OST-IRRADIATION PROCEDURE ARAMETERS MEASURED IAS CONDITIONS DURING IRRADIATION	7 7 7 8
6	Results		9
	6.1 I _{EF} 6.2 I _C 6.3 h _F 6.4 T∕	BO	10 11 12 13
7	Calibrat	ion details	19

1 Introduction

Die Devices has contracted Radtest Ltd to carry out total dose radiation testing of the BFR391 bipolar transistor. This report describes the samples and the test procedure and summarises the results.

2 Reference documents

- [RD1]: ESCC basic specification no. 22900, issue 5, "Total dose steady-state irradiation test method", June 2016;
- [RD2]: Mil-Std-883, method 1019.9, "Ionizing Radiation (Total Dose) Test Procedure";
- [RD3]: "Die requirements RF transistor BFR391 Ft=16 GHz", Microsemi drawing number 121200074, rev. D, dated 29 January 2021.
- [RD4]: "TID radiation test plan for BFR391 NPN transistors", Test plan DIE0120, issue 2, dated 02 February 2021.

3 Description of the samples

3.1 IDENTIFICATION OF THE SAMPLES

Device type number: BFR391

Manufacturer: Die Devices Ltd

Quantity: 15 devices in TO-46 packages were supplied for testing and 12 were given serial numbers 1 to 12. Samples 1 and 2 were kept unirradiated as control devices.

Datasheet reference: 121200074, rev. D, dated 29 January 2021 [RD3]

Sample size: five biased, five unbiased and two control samples

Wafer number: 1Z113767 WF5

Lot code: 201492

Date code: 921A

3.2 PICTURES OF THE SAMPLES

Figs. 1 and 2 show the package and the labelling on the outside of the package.

Fig. 1: sample package

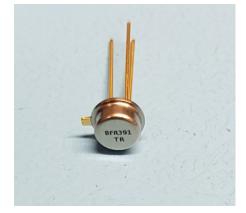


Fig. 2: example package markings

3.3 DISPOSITION OF THE SAMPLES

Each sample was labelled with its origin on the wafer, indicated by one of TR, TL, LR and LL. Table 1 shows the label for each test sample.

Sample number	Label	Status
1	TR	Control
2	LL	Control
3	TL	Biased
4	TR	Biased
5	LL	Biased
6	LR	Biased
7	TL	Biased
8	TL	Unbiased
9	TR	Unbiased
10	LL	Unbiased
11	LR	Unbiased
12	LR	Unbiased

Table 1: disposition of the samples

4 Radiation environment

4.1 RADIATION SOURCE

MRC Cell 2 at Harwell was used for the irradiation. This facility is fitted with two cobalt-60 sources emitting gamma radiation with a mean energy of 1.25MeV/photon. Source C was used for this work.

4.2 DOSIMETRY

The dose rate was determined by measurements with a TN31010-1 ionisation chamber, manufactured by PTW and allocated the reference number DS07 in Radtest's calibration register, in conjunction with a Unidos E reader, reference number DS01. These measurements were made on 16 March 2021.

4.3 RADIATION DOSE STEPS

Table 2 lists the start and end times for each irradiation and both annealing stages. All irradiations were carried out between 16 March and 8 June 2021.

Level	Dose step (krad[Si])	Start date/time	End date/time
1	100	16/03/21 16:35	13/04/21 11:17
2	150	13/04/21 12:09	27/04/21 10:00
3	200	27/04/21 10:50	11/05/21 08:07
4	250	11/05/21 08:56	25/05/21 08:05
5	300	25/05/21 08:50	08/06/21 08:01

Table 2: radiation test levels and times

4.4 RADIATION DOSE RATE

The measured dose rate was 1.65 Gy[H₂O]/hr, with an uncertainty of \pm 5%. This dose rate was converted to silicon as a reference material by multiplying by a factor of 0.916, giving a dose rate of 1.51 Gy[Si]/hr or 151 rad[Si]/hr.

The irradiation sequence covered a period of approximately three months and so a correction for the decay of the radioisotope was applied.

5 Test conditions and parameters measured

5.1 TEST CONDITIONS

Electrical testing was undertaken before irradiation and after each of five dose steps, as listed in table 2. This test was carried out with electrical measurements conducted in the not in-flux manner. Electrical bias was removed from the samples and the samples were transported on the bias board between the irradiation facility and the measurement facility and back again for the next irradiation.

5.2 POST-IRRADIATION PROCEDURE

In accordance with RD2, the time between the end of an irradiation and the start of the electrical measurements was no more than one hour. The time to perform the electrical measurements and to return the devices for the subsequent irradiation, if any, was no more than two hours from the end of the previous irradiation.

The sequence of electrical measurements was the same for each set of measurements made.

No post-irradiation annealing stages were applied.

5.3 PARAMETERS MEASURED

Tables 3 lists the measurements made on these samples (taken from RD4).

Pre-Irradiation:

Parameter	Pre-Irradiation	n Specification	Measurement Precision/Resolution
	MIN	MAX	
Ісво (А)		1.00E ⁻⁰⁶	±1.40E ⁻¹²
IEBO (A)		1.00E ⁻⁰⁶	±4.66E ⁻¹²
hfe	6.00E ⁺⁰¹	1.50E ⁺⁰²	±1.28E ⁺⁰⁰

Interim and Post-Irradiation:

Parameter	Test Conditions	Post-Irradiation Specification		
		MIN	MAX	
Ісво (А)	V _{CB} =5V, I _E =0mA		1.00E ⁻⁰⁶	
I _{EBO} (A)	V _{EB} =1V, I _C =0mA		1.00E ⁻⁰⁶	
h _{FE}	V _{CE} =5V, I _C =50mA	[hfe]=[60]	1.50E ⁺⁰²	

Table 3: parameters measured and specification limits

For these measurements, each test sample was plugged into a socket in an Agilent 16442B test fixture, connected to an Agilent B1500A Semiconductor Parameter Analyser (ET01) via leads of length 1m, as shown in overview in fig. 3.

Fig. 3: overview of the B1500A test equipment

5.4 BIAS CONDITIONS DURING IRRADIATION

The bias board comprised three sockets, each accommodating up to four test samples, as shown in fig. 4. Samples 3 to 7 were irradiated under the electrical bias condition shown in fig. 5 ('biased on'). Samples 8 to 12 were irradiated with their leads electrically shorted together ('biased off').

The supply voltage and current were monitored at intervals of one minute during irradiation. No deviations were observed.

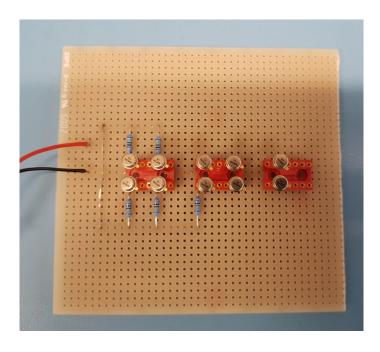


Fig. 4: bias board used during irradiation

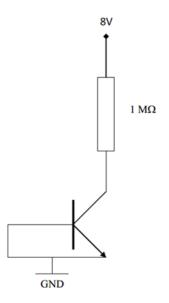


Fig. 5: bias arrangement

6 Results

The results are presented firstly as graphs of each parameter, with data for each test sample at each dose step. Data for the control samples are indicated by a black line. Data for the irradiated samples are shown as red ('biased on') or blue ('biased off') lines.

Secondly, the results are presented in tabular format, with the measured data from each dose step shown as an individual table page.

At no point during the work did any of the test samples show a measurement result that fell outside of the specification limits.

6.1 I_{EBO}

Cat	e numbe	я.	BFR391		Test dates:	12/03/2021 - 08/06/
Cal	egory:		NPN bipolar ti	ansistor	Samples:	2/10
Mar	nufacture	؛r:	Die Devices		Spec.	Max 1E-6A
Par	ameter:		Emitter-base	leakage current		
Tes	st equipm	ient:	B1500A			
Am	bient terr	perature during	irradiation:	20°C		
Rac	diation sc	ource:	MRC cell 2, H	larwell, UK		
Rac	diation typ	pe:	Gamma			
Ene	ergy:		1.25 MeV/pho	ton		
Elec	ctrical cc	onditions during	irradiation:	Devices 3 - 7 I	oiased, 8 - 12	unbiased
curr	2.5E-1	10 -				
Emitter-base leakage current (A)	2.0E-1 1.5E-1 1.0E-1	10 -				
Emitter-base leakage	2.0E-1 1.5E-1 1.0E-1 5.0E-1	10 - 10 - 10 - 11 -				
Emitter-base leakage	2.0E-1 1.5E-1 1.0E-1	10 - 10 - 10 - 11 -	+ 100 Tota			250 300
Emitter-base leakage	2.0E-1 1.5E-1 1.0E-1 5.0E-1			150 2 al integrated dos		250 300
Emitter-base leakage	2.0E-1 1.5E-1 1.0E-1 5.0E-1					

6.2 Ісво

	e number:	BFR391		Test dates:	12/03/2021 - 08/0)6/202
Cat	egory:	NPN bipolar tr	ansistor	Samples:	2/10	
Mar	nufacturer:	Die Devices		Spec.	Max 1E-6A	
Par	ameter:	Collector-bas	e leakage curr	ent		
Tes	t equipment:	B1500A				
Am	bient temperature	e during irradiation:	20°C			
Rad	diation source:	MRC cell 2, H	arwell, UK			
Rad	diation type:	Gamma				
Ene	ergy:	1.25 MeV/pho	ton			
Ele	ctrical conditions	during irradiation:	Devices 3 - 7	7 biased, 8 - 12	2 unbiased	
e leakage cur	5.0E-11 - 4.0E-11 -					
Collector-base leakage current (A)	3.0E-11 - 2.0E-11 - 1.0E-11 -					
Collector-base	2.0E-11 -		150 2 al integrated do		250 300	
Collector-base	2.0E-11 - 1.0E-11 - 0.0E+00 -				250 300	

6.3 h_{FE}

Category: NPN bipolar transistor Samples: 2/10 Manufacturer: Die Devices Spec. Min 60, max 150 Parameter: Gain (lc = 50mA) Image: Category (lc = 100 max) Image: Category (lc = 100 max) Test equipment: B1500A Image: Category (lc = 100 max) Image: Category (lc = 100 max) Ambient temperature during irradiation: 20°C Image: Category (lc = 100 max) Image: Category (lc = 100 max) Ambient temperature during irradiation: 20°C Image: Category (lc = 100 max) Image: Category (lc = 100 max) Ambient temperature during irradiation: 20°C Image: Category (lc = 100 max) Image: Category (lc = 100 max) Energy: 1.25 MeV/photon Image: Category (lc = 100 max) Image: Category (lc = 100 max) 80 Image: Category (lc = 100 max) Image: Category (lc = 100 max) Image: Category (lc = 100 max) 9 Image: Category (lc = 100 max) Image: Category (lc = 100 max) Image: Category (lc = 100 max) 9 Image: Category (lc = 100 max) Image: Category (lc = 100 max) Image: Category (lc = 100 max) 9 Image: Category (lc = 100 max) Image: Category (lc = 100 max) Image: Category (lc = 100 max) 9			BFR391		Test dates:	12/03/2021 -	08/06/202 ⁻
Parameter: Gain (lc = 50mA) Test equipment: B1500A Ambient temperature during irradiation: Radiation source: MRC cell 2, Harwell, UK Radiation type: Gamma Energy: 1.25 MeV/photon Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased		ory:	NPN bipolar tr	ansistor	Samples:	2/10	
Test equipment: B1500A Ambient temperature during irradiation: 20°C Radiation source: MRC cell 2, Harwell, UK Radiation type: Gamma Energy: 1.25 MeV/photon Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased	Manuf	acturer:	Die Devices		Spec.	Min 60, max 1	150
Ambient temperature during irradiation: 20°C Radiation source: MRC cell 2, Harwell, UK Radiation type: Gamma Energy: 1.25 MeV/photon Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased 0 0 0 0 0 0 0 0 0 0 0 0 0	Paran	neter:	Gain (lc = 50r	nA)			
Ambient temperature during irradiation: 20°C Radiation source: MRC cell 2, Harwell, UK Radiation type: Gamma Energy: 1.25 MeV/photon Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased 0 0 0 0 0 0 0 0 0 0 0 0 0							
Radiation source: MRC cell 2, Harwell, UK Radiation type: Gamma Energy: 1.25 MeV/photon Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased	Test e	quipment:	B1500A				
Radiation type: Gamma Energy: 1.25 MeV/photon Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased	Ambie	nt temperature duri	ng irradiation:	20°C			
Energy: 1.25 MeV/photon Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased	Radia	tion source:	MRC cell 2, H	arwell, UK			
Electrical conditions during irradiation: Devices 3 - 7 biased, 8 - 12 unbiased	Radia	tion type:	Gamma				
120 100 80 80 60 40 20 0 0 0 100 100 100 100 100	Energ	y:	1.25 MeV/pho	ton			
100 80 60 40 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Electr	ical conditions durin	g irradiation:	Devices 3 - 7	7 biased, 8 - 12	2 unbiased	
	lc = 50mA)						
	Gain (40 -					
	-	20 -					
Total integrated dose (krad)	-		100 150 Total ir		250 e (krad)	300	

6.4 TABULATED DATA

						Tested by:	RES
	12		2.61E-10	5.20E-12	106.0		
	11		2.61E-10	5.20E-12	106.0		
	10		2.67E-10	4.90E-12	104.0		
	9		2.21E-10	5.05E-12	96.2		
	8		2.09E-10	5.00E-12	105.0		
	7		1.94E-10	5.30E-12	105.0		
	6		2.65E-10	6.00E-12	103.0		
	5		2.82E-10	5.30E-12	99.6	1	
	4		2.01E-10 2.15E-10	4.15E-12	101.0	_	
	3		2.01E-10	5.20E-12	105.0		
	2	Control	2.75E-10	4.40E-12	104.0		
	1	Control	2.07E-10	4.95E-12	97.2		
			V ± 1%	V ± 1%	A ± 1%		
	DUT		I _{EBO}		h _{FE}		
					–	1	
Paramete	ers tested:	Emitter-base an	nd collector-ba	se leakage curr	ents and gair	ı	
est prog	ram:	STS ver. 3.00					
est equi	pment:	B1500A		Time since irra	adiation:	-	
Date code	e:	201492		Total integrate	d dose:	0 krad	
<i>l</i> anufacti		Die Devices		Time:	13:22		
ategory:		NPN bipolar trar	nsistor	Test number: Date:	12/03/2021		

Type nun	nber:	BFR391		Test number:	2		
Category		NPN bipolar tra	nsistor	Date:	13/04/2021		
Manufact	urer:	Die Devices		Time:	11:28		
Date cod	e:	201492		Total integrate	d dose:	100 krad	
Test equi	ipment:	B1500A		Time since irra	adiation:	00h 11m	
Test prog	gram:	STS ver. 3.00					
Paramete	ers tested:	Emitter-base ar	nd collector-ba	se leakage curr	ents and gain		
	D. IT					1	
	DUT		I _{EBO}	I _{сво}	h _{FE}		
			V ± 1%	V ± 1%	A ± 1%		
	1	Control	2.00E-10	2.80E-12	96.2		
	2	Control	2.67E-10	2.85E-12	103.0		
	3		1.83E-10	2.80E-12	103.0	1	
	4	1	1.96E-10	3.15E-12	99.7	1	
	5		2.61E-10	3.80E-12	98.8	1	
	6		2.43E-10	3.70E-12	102.0		
	7		1.77E-10	2.80E-12	104.0		
	8		1.90E-10	2.95E-12	104.0		
	9		2.01E-10	2.45E-12	95.3		
	10		2.45E-10	3.00E-12	103.0		
	11		2.37E-10	3.40E-12	105.0		
	12		2.37E-10	3.40E-12	105.0		
						Tested by:	RES

Type num	nber:	BFR391		Test number:	3		
Category		NPN bipolar trar	nsistor	Date:	27/04/2021		
Manufact	urer:	Die Devices		Time:	10:07		
Date cod	e:	201492		Total integrate	d dose:	150 krad	
Test equi	ipment:	B1500A		Time since irr	adiation:	00h 15m	
Test prog	gram:	STS ver. 3.00					
Paramete	ers tested:	Emitter-base ar	nd collector-ba	se leakage curr	ents and gain		
						1	
	DUT		I _{EBO}	I _{сво}	h _{FE}		
			V ± 1%	V ± 1%	A ± 1%		
	1	Control	2.00E-10	4.15E-12	96.2		
	2	Control	2.67E-10	3.25E-12	103.0		
	3		1.80E-10	4.90E-12	103.0	1	
	4		1.91E-10	4.60E-12	99.6	1	
	5		2.56E-10	4.50E-12	98.6		
	6		2.39E-10	4.40E-12	102.0		
	7		1.75E-10	4.85E-12	104.0		
	8		1.87E-10	4.35E-12	104.0		
	9		1.98E-10	2.85E-12	95.1		
	10		2.40E-10	4.20E-12	103.0		
	11		2.38E-10	5.65E-12	105.0		
	12		2.38E-10	5.65E-12	105.0		
						Tested by:	RES

Type num	ıber:	BFR391		Test number:	4		
Category:		NPN bipolar trar	nsistor	Date:	11/05/2021		
Manufacturer:		Die Devices		Time:	08:17		
Date code:		201492		Total integrated dose:		200 krad	
Test equipment:		B1500A		Time since irradiation:		00h 10m	
Test program:		STS ver. 3.00					
Paramete	rs tested:	Emitter-base ar	nd collector-ba	se leakage curr	ents and gair	n	
	DUT		I _{EBO}	I _{сво}	h _{FE}	_	
			V ± 1%	V ± 1%	A ± 1%		
	1	Control	2.25E-10	2.58E-11	95.9		
	2		2.94E-10	2.26E-11	103.0	_	
	3		2.04E-10	3.00E-11	104.0		
	4	+	2.17E-10	2.94E-11	99.3		
	5		2.80E-10	2.71E-11	98.1		
	6		2.64E-10	2.79E-11	102.0	_	
	7		2.01E-10	2.69E-11	104.0		
	8		2.13E-10	2.90E-11	103.0		
	9		2.25E-10	2.60E-11	94.8		
	10		2.66E-10	2.80E-11	103.0	-	
	11		2.64E-10	2.90E-11	104.0	-	
	12		2.64E-10	2.90E-11	104.0		
						Tested by:	RES

Type num	ber:	BFR391		Test number:	5		
Category:		NPN bipolar transistor		Date:	25/05/2021		
Manufacturer:		Die Devices		Time:	08:15		
Date code:		201492		Total integrated dose:		250 krad	
Test equipment:		B1500A		Time since irradiation:		00h 10m	
Test program:		STS ver. 3.00					
Parametei	rs tested:	Emitter-base an	d collector-ba	se leakage curr	ents and gair	1	
	DUT		I _{EBO}	I _{сво}	h _{FE}		
			V ± 1%	V ± 1%	A ± 1%		
	1	Control	2.26E-10	2.37E-11	96.1		
	2		2.92E-10	2.26E-11	103.0		
	3		1.99E-10	2.09E-11	104.0		
	4		2.12E-10	2.41E-11	99.3		
	5		2.77E-10	2.65E-11	98.3		
	6		2.61E-10	2.55E-11	102.0		
	7		1.96E-10	2.68E-11	104.0		
	8		2.07E-10	2.09E-11	104.0		
	9		2.18E-10	2.50E-11	94.9		
	10		2.64E-10	2.79E-11	103.0		
	11		2.58E-10	2.18E-11	104.0		
	12		2.58E-10	2.18E-11	104.0		
						Tested by:	RES

Type nun	nber:	BFR391		Test number:	6		
Category:		NPN bipolar trai	nsistor	Date:	08/06/2021		
Manufacturer:		Die Devices		Time:	08:37		
Date code:		201492		Total integrated dose:		300 krad	
Test equipment:		B1500A		Time since irradiation:		00h 26m	
Test program:		STS ver. 3.00					
Paramete	ers tested:	Emitter-base ar	nd collector-ba	se leakage curr	ents and gair	1	
	D. IT					1	
	DUT		I _{EBO}	I _{CBO}	h _{FE}		
			A±1%	A ± 1%	A ± 1%		
			0.455.40	0.405.44	07.0		
	1	Control	2.45E-10	3.46E-11	97.3		
	2		3.15E-10 2.15E-10	5.15E-11 5.80E-11	104.0 105.0		
	4		2.13E-10 2.24E-10	5.74E-11	100.0		
	5		2.24E-10 2.90E-10	5.69E-11	99.4		
	6		2.30E-10 2.73E-10	6.20E-11	103.0	-	
	7		2.04E-10	6.04E-11	105.0		
	8		2.17E-10	5.57E-11	105.0		
	9		2.30E-10	5.24E-11	96.0		
	10		2.70E-10	3.55E-11	104.0		
	11		2.67E-10	3.49E-11	106.0	1	
	12		2.67E-10	3.49E-11	106.0		
						Tested by:	RES

7 Calibration details

This section lists the test instruments used during the work and provides details of their calibration status.

Code	Manufacturer	Description	Serial no	Date last calibrated	Date next calibration due
DS01	PTW	Unidos E dosemeter	1250	17/08/20	17/08/22
DS07	PTW	TN31010 ion chamber	6561	12/03/20	12/03/22
ET01	Agilent	B1500A parameter analyser	JP49320110	17/03/20	17/03/21
ET02	Tektronix	DMM4050	2129207	22/05/20	22/05/21
ET15	Lufft	Opus 20 barometer	148.0414.0802.022	01/03/21	01/03/22
ET16	Keysight	E3633A power supply	MY55506488	17/02/21	17/02/22
ET34	Lufft	Opus 20 barometer	169.0314.0802.022	23/06/20	23/06/21

Table 4: list of calibrated instruments used for the work.